scholarly journals A Simheuristic Method for the Reversible Lanes Allocation and Scheduling Problem at Smart Container Terminal Gate

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Wenyuan Wang ◽  
Ying Jiang ◽  
Yun Peng ◽  
Yong Zhou ◽  
Qi Tian

Under the constraints of limited spaces and imbalanced traffic volumes (for both in and out directions) of container gates, reversible lane layouts become an economical and practical way to improve the service level of container terminal systems and make the maximum use of the current terminal resources. Together with a consideration of minimized total costs (both construction and operating) of terminal gate system, this paper first developed an optimization model to decide the number and scheduling rules of the reversible lanes at a terminal gate. A metaheuristic algorithm was built to solve the optimal model. Meanwhile, to reflect the randomness and dynamics property of the terminal gate system in practice, parameters that cannot be calculated from conventional analytic methods are obtained through a simulation model. Finally, a hub container terminal in the northeast of China was employed to verify the effectiveness of the proposed method and provide a theoretical foundation for the construction and management of terminal gate systems.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Ming Zeng ◽  
Wenming Cheng ◽  
Peng Guo

As the significant connection between the external and internal of the railway container terminal, the operation performance of the gate system plays an important role in the entire system. So the gate congestion will bring many losses to the railway container terminal, even the entire railway container freight system. In this paper, the queue length and the average waiting time of the railway container terminal gate system, as well as the optimal number of service channels during the different time period, are investigated. AnM/Ek/ntransient queuing model is developed based on the distribution of the arrival time interval and the service time; besides the transient solutions are acquired by the equally likely combinations (ELC) heuristic method. Then the model is integrated into an optimization framework to obtain the optimal operation schemes. Finally, some computational experiments are conducted for model validation, sensitivity testing, and system optimization. Experimental results indicate that the model can provide the accurate reflection to the operation situation of the railway container terminal gate system, and the approach can yield the optimal number of service channels within the reasonable computation time.


2013 ◽  
Vol 438-439 ◽  
pp. 2013-2016 ◽  
Author(s):  
Wen Yuan Wang ◽  
Guo Lei Tang ◽  
Zi Jian Guo ◽  
Xiang Qun Song ◽  
Peng Cheng Du

As the number of calling ships in container terminals rises, waterways in some harbors have become the major constraint to the overall performance of the ports service. By constructing anchorages, the congestion that happens frequently in harbor can be effectively eased, thus the traffic capacity is greatly enhanced. The purpose of this paper is to study the impact of anchorage number on waterway traffic capacity and provide theoretical foundation when deciding the anchorage scale. A simulation method with consideration of anchorages is adopted to analyze the vessels entering and departing process in coastal container terminal. Results show that waterway traffic capacity and anchorage number are polynomial correlated, waterway traffic capacity increases with the growth of anchorage number and ceases when beyond a certain level. It will be of great help to serve the planning and constructing ports and terminals.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rosa G. González-Ramírez ◽  
J. Rene Villalobos ◽  
Cesar Meneses

PurposeThis paper explores the effect of port's service time, particularly the mean and variability, on shippers' total landed costs to determine the competitive position of the port and derive recommendations for the strategic design of port services.Design/methodology/approachThe competitive position of a port is estimated considering the service level offered to the end-users of the port such as port service time, its variability and its effect on the total landed costs observed by the port users. The proposed methodology is meant to help ports to determine the required service time levels to maintain or gain a competitive advantage against other ports, in terms of attracting common hinterland's customers.FindingsResults show the advantages of considering service levels factors to determine the competitive position of a port, and what are the minimum characteristics required to capture more traffic volumes, that can help port managers to take strategic design decisions to better position the port in the current fierce market.Research limitations/implicationsThe proposed methodology is illustrated by considering a case study, which is the Port of Guaymas in Mexico. Data was not directly collected by the port, but based on interviews with shippers and public information, a representative case is presented. Due to a confidentiality agreement with the Port, specific references for most of the data used to estimate the model's parameters are not provided. The analysis is intended to show the potential value of this mechanism and can be used for evaluating the competitive position, from a high-level perspective, of any port to determine potential hinterland by improving the service level of the port.Originality/valueThe existing literature on port choice and port competition has not previously considered the effect of port service levels under the perspective of total landed costs of the users, being this paper a contribution to fulfill this gap.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sivashan Chetty ◽  
Aderemi O. Adewumi

The Just-In-Time (JIT) scheduling problem is an important subject of study. It essentially constitutes the problem of scheduling critical business resources in an attempt to optimize given business objectives. This problem is NP-Hard in nature, hence requiring efficient solution techniques. To solve the JIT scheduling problem presented in this study, a new local search metaheuristic algorithm, namely, the enhanced Best Performance Algorithm (eBPA), is introduced. This is part of the initial study of the algorithm for scheduling problems. The current problem setting is the allocation of a large number of jobs required to be scheduled on multiple and identical machines which run in parallel. The due date of a job is characterized by a window frame of time, rather than a specific point in time. The performance of the eBPA is compared against Tabu Search (TS) and Simulated Annealing (SA). SA and TS are well-known local search metaheuristic algorithms. The results show the potential of the eBPA as a metaheuristic algorithm.


2019 ◽  
Vol 5 (1) ◽  
pp. 30-66 ◽  
Author(s):  
Masoud Kavoosi ◽  
Maxim A. Dulebenets ◽  
Olumide Abioye ◽  
Junayed Pasha ◽  
Oluwatosin Theophilus ◽  
...  

Purpose Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT. Design/methodology/approach A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands. Findings The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s. Research limitations/implications Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic. Practical implications The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time. Originality/value A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions.


2013 ◽  
Vol 380-384 ◽  
pp. 4775-4781
Author(s):  
Ji Feng Qian ◽  
Xiao Ning Zhu ◽  
Zhan Dong Liu

In order to improve the efficiency of the handling operations equipment in container terminal, reduce the waiting time of container ship in Port, this paper researches the integrated scheduling of the different types of handling equipment in container terminal, considers the constraints of different handling equipment impact between each other, build a mixed integer programming model, presents a heuristic algorithm for the of the scheduling problem and gets the approximate solution. The results show that the integrated scheduling can effectively reduce the time of the ship staying in port, and improve the overall operating efficiency of the port.


Sign in / Sign up

Export Citation Format

Share Document