scholarly journals Free Vibration Analysis of Rotating Pretwisted Functionally Graded Sandwich Blades

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
L. T. Liu ◽  
Y. X. Hao ◽  
W. Zhang ◽  
J. Chen

A new structural dynamic model for the free vibration characteristic analysis of rotating pretwisted functionally graded (FG) sandwich blades is developed. The sandwich blade is made up of two functionally graded skins and a homogeneous material core. The thick shell theory is applied to derive the basic equations of motion of the rotating FG sandwich blade by considering the effects of centrifugal and Coriolis forces. The mode shapes are expanded in terms of two-dimensional algebraic polynomials in the Rayleigh–Ritz method, and the static and dynamic natural frequencies of the blade are obtained. The convergence analysis is studied, and the accuracy of the proposed model is verified by comparing with the literature results and ANSYS data. The effects of frequency parameters such as the twist angle, the thickness ratio, the aspect ratio, the layer thickness ratio, the scalar parameter of volume fraction, the stagger angle, and the rotation velocity on the vibration characteristics for pretwist FG sandwich blade are investigated in detail. In addition, the phenomena of frequency locus veering and mode shape exchanging occur in the static and dynamic states. Frequency locus veering is essentially caused by the coupling between different modes.

Author(s):  
Suman Pal ◽  
Debabrata Das

The present work investigates the free vibration behavior of double-tapered functionally graded beams rotating in thermal environment, using an improved mathematical model. The functional gradation for ceramic–metal compositions, following power-law, is considered to be symmetric with respect to the mid-plane, leading to metal-rich core and ceramic-rich outer surfaces of the beam. The temperature dependence of the material properties are considered using Touloukian model. The nonlinearity in strain–displacement relationships for both the axial and transverse shear strains are considered. Firstly, the governing equations for deformed beam configuration under time-independent centrifugal loading are obtained using minimum total potential energy principle, and the solution is obtained following Ritz method. Then the free vibration problem of the centrifugally deformed beam is formulated employing Lagrange’s principle and considering tangent stiffness of the deformed beam configuration. Coriolis effect is considered in the mathematical model, and the governing equations are transformed to the state-space for obtaining an eigenvalue problem. The results for the first two modes of both chord-wise and flap-wise vibrations are presented in nondimensional plane to show the effects of taperness parameter, root-offset parameter, volume fraction exponent, operating temperature, and functionally graded material composition. The results in comparative form are presented for both temperature-dependent and temperature-independent material properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nguyen Van Dung ◽  
Nguyen Chi Tho ◽  
Nguyen Manh Ha ◽  
Vu Trong Hieu

Rotating structures can be easily encountered in engineering practice such as turbines, helicopter propellers, railroad tracks in turning positions, and so on. In such cases, it can be seen as a moving beam that rotates around a fixed axis. These structures commonly operate in hot weather; as a result, the arising temperature significantly changes their mechanical response, so studying the mechanical behavior of these structures in a temperature environment has great implications for design and use in practice. This work is the first exploration using the new shear deformation theory-type hyperbolic sine functions to carry out the free vibration analysis of the rotating functionally graded graphene beam resting on the elastic foundation taking into account the effects of both temperature and the initial geometrical imperfection. Equations for determining the fundamental frequencies as well as the vibration mode shapes of the beam are established, as mentioned, by the finite element method. The beam material is reinforced with graphene platelets (GPLs) with three types of GPL distribution ratios. The numerical results show numerous new points that have not been published before, especially the influence of the rotational speed, temperature, and material distribution on the free vibration response of the structure.


2011 ◽  
Vol 471-472 ◽  
pp. 133-139 ◽  
Author(s):  
Ali Shahrjerdi ◽  
Faizal Mustapha ◽  
S.M. Sapuan ◽  
M. Bayat ◽  
Dayang Laila Abang Abdul Majid ◽  
...  

This research has been conducted to approach second-order shear deformation theory (SSDT) to analysis vibration characteristics of Functionally Graded Plates (FGP’s). Material properties in FGP's were assumed to be temperature dependent and graded along the thickness using a simple power law distribution in term of the volume fractions of the constituents. FGP was subjected to a linear and nonlinear temperature rise. The energy method was chosen to derive the equilibrium equations. The solution was based on the Fourier series that satisfy the simply supported boundary condition (Navier's method). Numerical results indicated the effect of material composition, plate geometry, and temperature fields on the vibration characteristics and mode shapes. The results revealed that, the temperature field and volume fraction distribution had significant effect on the vibration of FGPs. It was observed the second order theory was very close to the other shear deformation theorem as reported in the literature.


2014 ◽  
Vol 971-973 ◽  
pp. 548-564 ◽  
Author(s):  
Boutahar Lhoucine ◽  
Khalid El Bikri ◽  
Benamar Rhali

The geometrically non-linear axisymmetric free vibration of functionally graded annular plate (FGAP) having both edges clamped is analyzed in this paper. The material properties of the constituents are assumed to be temperature-independent and the effective properties of FGAP are graded in thickness direction according to a simple power law function in terms of the volume fractions. Based on the classical Plate theory and von Karman type non-linear strain-displacement relationships, the nonlinear governing equations of motion are derived using Hamilton’s principle. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to twice the plate thickness. The numerical results are given for the first two axisymmetric non-linear mode shapes, for a wide range of vibration amplitudes and they are presented either in a tabular or in a graphical form, to show the significant effects that the large vibration amplitudes and the variation in material properties have on the non-linear frequencies and the associated bending stresses of the FGAP.


Author(s):  
M. H. Kargarnovin ◽  
M. Hashemi

Free vibration of multilayered composite cylinder which volume fraction of fiber varies according to power law in longitudinal direction has been studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fibrous functionally graded composite. Strain-displacement relations employed are based on Reissner-Naghdi-Berry’s shell theory. The displacement finite element model of the governing equations of motion is derived by writing weak form of them. The Lagrangian shape functions for in-plane displacements and Hermitian shape functions for displacement in normal direction to the surface of mid-plane are utilized by defining a conformal quadrilateral element. The results show that by appropriate grading material properties of fiber in longitudinal direction the natural frequencies can be increased in comparison with traditional composite in which volume fraction of fiber does not vary.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050007 ◽  
Author(s):  
Atteshamuddin S. Sayyad ◽  
Yuwaraj M. Ghugal

In this study, a theoretical unification of twenty-one nonlocal beam theories are presented by using a unified nonlocal beam theory. The small-scale effect is considered based on the nonlocal differential constitutive relations of Eringen. The present unified theory satisfies traction free boundary conditions at the top and bottom surface of the nanobeam and hence avoids the need of shearing correction factor. Hamilton’s principle is employed to derive the equations of motion. The present unified nonlocal formulation is applied for the bending, buckling and free vibration analysis of functionally graded (FG) nanobeams. The elastic properties of FG material vary continuously by gradually changing the volume fraction of the constituent materials in the thickness direction. Closed-form analytical solutions are obtained by using Navier’s solution technique. Non-dimensional displacements, stresses, natural frequencies and critical buckling loads for FG nanobeams are presented. The numerical results presented in this study can be served as a benchmark for future research.


2019 ◽  
Vol 3 (4) ◽  
pp. 104 ◽  
Author(s):  
Vu Van Tham ◽  
Tran Huu Quoc ◽  
Tran Minh Tu

In this paper, a new four-variable refined shell theory is developed for free vibration analysis of multi-layered functionally graded carbon nanotube-reinforced composite (FG-CNTRC) doubly curved shallow shell panels. The theory has only four unknowns and satisfies zero stress conditions at the free surfaces without correction factor. Five different types of carbon nanotube (CNTs) distribution through the thickness of each FG-CNT layer are considered. Governing equations of simply supported doubly curved FG-CNTRC panels are derived from Hamilton’s principle. The resultant eigenvalue system is solved to obtain the frequencies and mode shapes of the anti-symmetric cross-ply laminated panels by using the Navier solution. The numerical results in the comparison examples have proved the accuracy and efficiency of the developed model. Detailed parametric studies have been carried out to reveal the influences of CNTs volume fraction, CNTs distribution, CNTs orientation, dimension ratios and curvature on the free vibration responses of the doubly curved laminated FG-CNTRC panels.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350004 ◽  
Author(s):  
D. K. JHA ◽  
TARUN KANT ◽  
R. K. SINGH

Free vibration analysis of functionally graded elastic, rectangular, and simply supported (diaphragm) plates is presented based on a higher-order shear and normal deformation theory (HOSNT). Although functionally graded materials (FGMs) are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to the spatial coordinates. The material properties of functionally graded (FG) plates are assumed here to be varying through the thickness of the plate in a continuous manner. The Poisson ratios of the FG plates are assumed to be constant, but their Young's modulii and densities vary continuously in the thickness direction according to the volume fraction of constituents which is mathematically modeled as a power law function. The equations of motion are derived using Hamilton's principle for the FG plates on the basis of a HOSNT assuming varying material properties. Numerical solutions are obtained by the use of Navier solution method. The accuracy of the numerical solutions is first established through comparison with the exact three-dimensional (3D) elasticity solutions and the present solutions are then compared with available solutions of other models.


Sign in / Sign up

Export Citation Format

Share Document