scholarly journals Effect of Surface Coating on Bond Strength between Etched Feldspar Ceramic and Resin-Based Luting Agents

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Jader Sebben ◽  
Volni A. Canevese ◽  
Rodrigo Alessandretti ◽  
Gabriel K. R. Pereira ◽  
Rafael Sarkis-Onofre ◽  
...  

This study evaluated adhesive protocols (silane, silane and unfilled resin, and universal adhesive) of bond strength between feldspar ceramic and resin-based luting agents (RBLAs). Thirty ceramic disks were embedded into acrylic resin, polished, etched, and randomly divided into 6 groups: S-RC: silane (S) and light-cured resin cement (RC) (RelyX Veneer; 3M ESPE); SB-RC: S followed by bond (B) (Clearfil SE Bond, Kuraray) and RC; UA-RC: universal adhesive (UA) (Single Bond Universal; 3M ESPE) and RC; flowable composite resin (F) was used on groups S-F, SB-F, and UA-F, and luting agent cylinders were built. The response variables (n=20) were microshear bond strength (MPa), characteristic strength (σ0, MPa), and Weibull modulus (m). The RC groups presented similar bond strengths regardless of whether or not bond was used. The S-F group with only silane application showed the highest bond strength, while the universal adhesive showed the lowest bond strength. The reliability was only affected in the UA-RC group, which was lower than the S-F group. Silane application is fundamental since the universal adhesive only decreased the bond strength between the feldspar ceramic and the RBLAs. Overall, the use of unfilled resin did not positively influence bond strength.

2016 ◽  
Vol 27 (4) ◽  
pp. 458-462 ◽  
Author(s):  
Celso Sebastião Garboza ◽  
Sandrine Bittencourt Berger ◽  
Ricardo Danil Guiraldo ◽  
Ana Paula Piovezan Fugolin ◽  
Alcides Gonini-Júnior ◽  
...  

Abstract The purpose of this study was to evaluate the microshear bond strength of ceramic prosthetic structures reinforced by lithium disilicate cemented with resin cement under conditions of different surface treatments and adhesive systems. Seventy-two rectangular blocks of lithium disilicate (6.5 mm long × 5 mm wide × 1 mm thick) were fabricated, air abraded with 50-μm Al2O3 particles and divided into six groups (n=12) depending on the surface pretreatments. The groups were as follows: 10HF/S/SBM: 10% hydrofluoric acid etched for 20 s (10HF) + silane (S) + Adper Scotchbond Multi-Purpose (SBM); 10HF/S/SB: 10HF + S + Single Bond Universal (SB); 10HF/SBM; 10HF/SB; S/SBM and S/SB. Two 1-mm-long plastic tubes were placed on the specimens, filled with RelyX ARC resin cement and cured for 20 s per tube. The plastic tube was removed, and the microshear bond strength was tested. Data were submitted to analysis of variance and Tukey's tests (α=0.05). Fractured specimens were observed under optical microscopy. For both adhesives, the bond strengths (MPa) of groups treated with acid-etching and silane (10HF/S/SB: 24.82, 10HF/S/SBM: 24.90) were higher (p<0.001) than those of groups treated with acid-etching (10HF/SB: 16.47, 10HF/SBM: 19.94) only or only silane (S/SB: 18.42, S/SBM: 13.24). All groups showed a predominance of failure adhesive. The silanization should be a clinical step in cementing ceramic structures reinforced by lithium disilicate, even with the application of universal adhesive that contains silane in its formulation.


2015 ◽  
Vol 40 (1) ◽  
pp. 55-62 ◽  
Author(s):  
J-H Kim ◽  
S-Y Chae ◽  
Y Lee ◽  
G-J Han ◽  
B-H Cho

SUMMARY This study evaluated the effects of single-bottle, multipurpose, universal adhesives on the bond strength of resin cement to zirconia ceramic. Polished zirconia ceramic (Cercon base) discs were randomly divided into four groups (n=40) according to the applied surface-conditioning agent: Single Bond 2, Single Bond Universal, All-Bond Universal, and Alloy Primer. Cured composite cylinders (Ø 0.8 mm × 1 mm) were cemented to the conditioned zirconia specimens with resin cement (RelyX ARC). The bonded specimens were subjected to a microshear bond-strength test after 24 hours of water storage and after 10,000 cycles of thermocycling. The surface-conditioning agent significantly influenced the bond strength (p&lt;0.05). Single Bond Universal showed the highest initial bond strength (37.7 ± 5.1 MPa), followed by All-Bond Universal (31.3 ± 5.6 MPa), Alloy Primer (26.9 ± 5.1 MPa), and Single Bond 2 (8.5 ± 4.6 MPa). Artificial aging significantly reduced the bond strengths of all the test groups (p&lt;0.05). After 10,000 cycles of thermocycling, All-Bond Universal showed the highest bond-strength value (26.9 ± 6.4 MPa). Regardless of artificial aging, Single Bond Universal and All-Bond Universal showed significantly higher bond strengths than Alloy Primer, a conventional metal primer.


2019 ◽  
Vol 18 ◽  
pp. e190918
Author(s):  
Michele Mirian May ◽  
Ana Maria Estivalete Marchionatti ◽  
Luiz Felipe Valandro ◽  
Edson Luiz Foletto ◽  
Lucio Strazzabosco Dorneles ◽  
...  

Aim: This study evaluated the effect of surface treatments of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics on their bond strength to a resin cement. Methods: Seventy zirconia blocks (6 × 6 × 2 mm3, IPS e.max ZirCAD) were assigned into 7 groups (n=10) – as-sintered (AS), no treatment; tribochemical silica coating + silanization (TBS; Cojet-sand; ProSil); airabrasion with 45 μm alumina particles + universal primer (AAP; Monobond®Plus); fusion sputtering (FS); SiO2 nanofilm + silanization (SN; ProSil); FS+SN+ silanization (FSSN; ProSil); FS+SN+Universal Primer (FSSNP; Monobond®Plus). Afterwards, a resin cement (RelyX™ ARC) was applied inside cylinders (Ø = 0.96 mm × 1 mm height) placed on the zirconia surfaces. Microshear bond strength tests (μSBS) were carried out (1 mm/min). Failure and phase transformation analysis were performed. Bond strength data (MPa) were subjected to Kruskal-Wallis/Mann Whitney tests. Results: TBS (27 ± 1.2) and AAP (24.7 ± 0.8) showed higher bond strengths than the other groups, followed by FSSNP (15.5 ± 4.2) and FSSN (13.3 ± 3.6). FS (3.4 ± 0.44) and SN (9.5 ± 2.7) showed the lowest values (p < 0.001). Most of the specimens exhibited an adhesive failure. Conclusion: Air-abrasion by silica-coated alumina particles followed by silanization or by alumina particles followed by universal primer resulted in the highest resin bond strength to zirconia. Fusion sputtering and silica nanofilm deposition induced low strengths. However, when these methods are applied in combination and with a primer (FSSN and FSSNP), higher bond strengths may be achieved. Low bond strengths are obtained when no zirconia treatment is performed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yoon Lee ◽  
Jae-Hoon Kim ◽  
Jung-Soo Woo ◽  
Young-Ah Yi ◽  
Ji-Yun Hwang ◽  
...  

Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive.Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n=16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, andμSBS was evaluated with/without thermocycling. TheμSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM).Results. Without thermocycling,μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P<0.05). Thermocycling significantly reducedμSBS in SBU (22.49 MPa ± 4.11) (P<0.05), but not in NC (20.68 MPa ± 4.60) and PC (28.77 MPa ± 3.52) (P>0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively.Conclusion. SBU treatment improvesμSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowestμSBS, which remained unchanged after thermocycling.


2016 ◽  
Vol 17 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Lourenço Correr-Sobrinho ◽  
Daniele M da Silveira-Pedrosa ◽  
Luis RM Martins ◽  
Mário AC Sinhoreti ◽  
Manoel D Sousa-Neto ◽  
...  

ABSTRACT Aim To evaluate the push-out bond strength (BS) of direct anatomic posts (DAPs) and conventional fiber posts (CFPs) cemented with different luting agents in different thirds of flared root canals. Materials and methods A total of 60 human single-rooted canine teeth were transversally sectioned 16 mm from the radicular apex. After endodontic treatment, canals were flared with diamond burs. Samples were divided into six groups according to post type and luting agent: DAP and RelyX U100 (RXU); DAP and RelyX ARC (RXA); DAP and RelyX Luting 2 (RXL); CFP and RXU; CFP and RXA; CFP and RXL. Roots were sectioned transversely into six 1-mm-thick slices. The push-out test was performed and failure modes were observed. Results The DAP groups (7.23 ± 2.05) showed highest BS values (p < 0.05) when compared with CFP (5.93 ± 1.76). RelyX U100 (8.17 ± 1.70) showed higher BS values (p < 0.05) than RXA (6.46 ± 1.38), and RXL (5.10 ± 1.65) showed the lowest values. Bond strength on the apical third was statistically lower (p < 0.05) than that on the other thirds of the root canals. There was a predominance of adhesive failure for all groups. Conclusion The DAPs improved retention in flared root canals, and RXU was the most effective luting agent. The apical third showed the lowest BS values. Clinical significance The relining procedure of fiber posts with composite and the proper selection of luting resin cement are important for increasing bonding effectiveness in flared root canals. How to cite this article da Silveira-Pedrosa DM, Martins LRM, Sinhoreti MAC, Correr-Sobrinho L, Sousa-Neto MD, Costa ED Jr, de F Pedrosa-Filho C, de Carvalho JR Jr. Push-out Bond Strength of Glass Fiber Posts Cemented in Weakened Roots with Different Luting Agents. J Contemp Dent Pract 2016;17(2): 119-124.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Sheila Butler ◽  
Bernie Linke ◽  
Ysidora Torrealba

Purpose. The aim of this study was to evaluate the influence of multimode MDP-based primers and different application protocols on the bond strength of a representative resin cement to an yttrium stabilized tetragonal zirconia (Y-TZP) ceramic.Materials and Methods. The occlusal dentin from 60 human molars was exposed. The teeth and zirconia cylinders (N = 60) (3 mm of diameter; 4 mm of height) were divided into six groups (n = 10) according to the ceramic surface conditioning: (1) air abraded with SiO2particles; (2) Z-Prime Plus; (3) air abraded with SiO2particles + Z-Prime Plus; (4) air abraded with SiO2particles + All-Bond Universal; (5) air abraded with SiO2particles + ScotchBond Universal Adhesive; and (6) untreated zirconia. The luting agent (Duo-Link cement) was applied on the treated dentin surface. Specimens were stored in water (37°C, 24 h) and tested in shear bond strength. Data were statistically analyzed using 2-way ANOVA and Post hoc Tukey tests (α= 0.05).Results. Significant effects of ceramic conditioning were found (p<0.0001). The specimens sandblasted with silica particles followed by the application of Z-Prime Plus or All-Bond Universal presented greater bond strength values. For the untreated zirconia, several specimens failed prematurely prior to testing.Conclusions. Sandblasting with silica particles combined with Z-Prime Plus increased the bond strength.


2020 ◽  
Vol 12 (1) ◽  
pp. 22 ◽  
Author(s):  
Soner Şişmanoğlu ◽  
Aliye Tuğçe Gürcan ◽  
Zuhal Yıldırım-Bilmez ◽  
Rana Turunç-Oğuzman ◽  
Burak Gümüştaş

2017 ◽  
Vol 42 (4) ◽  
pp. 367-374 ◽  
Author(s):  
IA Fornazari ◽  
I Wille ◽  
EM Meda ◽  
RT Brum ◽  
EM Souza

SUMMARY Purpose: The aim of this study was to evaluate the effect of surface treatment and universal adhesive on the microshear bond strength of nanoparticle composite repairs. Methods: One hundred and forty-four specimens were built with a nanofilled composite (Filtek Supreme Ultra, 3M ESPE). The surfaces of all the specimens were polished with SiC paper and stored in distilled water at 37°C for 14 days. Half of the specimens were then air abraded with Al2O3 particles and cleaned with phosphoric acid. Polished specimens (P) and polished and air-abraded specimens (A), respectively, were randomly divided into two sets of six groups (n=12) according to the following treatments: hydrophobic adhesive only (PH and AH, respectively), silane and hydrophobic adhesive (PCH, ACH), methacryloyloxydecyl dihydrogen phosphate (MDP)–containing silane and hydrophobic adhesive (PMH, AMH), universal adhesive only (PU, AU), silane and universal adhesive (PCU, ACU), and MDP-containing silane and universal adhesive (PMU, AMU). A cylinder with the same composite resin (1.1-mm diameter) was bonded to the treated surfaces to simulate the repair. After 48 hours, the specimens were subjected to microshear testing in a universal testing machine. The failure area was analyzed under an optical microscope at 50× magnification to identify the failure type, and the data were analyzed by three-way analysis of variance and the Games-Howell test (α=0.05). Results: The variables “surface treatment” and “adhesive” showed statistically significant differences for p&lt;0.05. The highest mean shear bond strength was found in the ACU group but was not statistically different from the means for the other air-abraded groups except AH. All the polished groups except PU showed statistically significant differences compared with the air-abraded groups. The PU group had the highest mean among the polished groups. Cohesive failure was the most frequent failure mode in the air-abraded specimens, while mixed failure was the most common mode in the polished specimens. Conclusions: While air abrasion with Al2O3 particles increased the repair bond strength of the nanoparticle composite, the use of MDP-containing silane did not lead to a statistically significant increase in bond strength. Silane-containing universal adhesive on its own was as effective as any combination of silane and adhesive, particularly when applied on air-abraded surfaces.


2019 ◽  
Vol 7 (3) ◽  
pp. 82
Author(s):  
Kosuke Kurahashi ◽  
Takashi Matsuda ◽  
Yuichi Ishida ◽  
Tetsuo Ichikawa

These days, new prosthodontic materials are appearing with the development of digitalization. Among these, the use of polyetheretherketone (PEEK) as the clasp of removable partial dentures has been proposed. The adhesive strength between the PEEK and acrylic resin influences the probability of denture fracture. To investigate the effect of PEEK surface treatments on the shear bond strength to acrylic resin, five surface treatment conditions of PEEK were analyzed: 1. no treatment; 2. ceramic primer application; 3. Al2O3 sandblasting; 4. Rocatec; and 5. Rocatec with ceramic primer application, comparing with a metal primer-treated Co-Cr alloy. Two kinds of autopolymerizing resin (Unifast II and Palapress Vario) were used as bonding materials. The specimens were evaluated to determine the bond strength. Rocatec treatment with ceramic primer application yielded the highest bond strengths (12.71 MPa and 15.32 MPa, respectively, for Unifast II and Palapress Vario). When compared to a metal primer-treated Co-Cr alloy, the bond strength of PEEK to Unifast II was similar, whereas it was about 60% of that to Palapress Vario. Rocatec treatment, combined with ceramic primer, showed the highest bond strength of PEEK to acrylic resin. Treatment of PEEK will enable its use as the clasp of removable dentures and the fixation of PEEK prostheses.


2014 ◽  
Vol 39 (5) ◽  
pp. 489-499 ◽  
Author(s):  
J Perdigão ◽  
MA Muñoz ◽  
A Sezinando ◽  
IV Luque-Martinez ◽  
R Staichak ◽  
...  

SUMMARY Objectives To evaluate the effect of acid etching and application of a hydrophobic resin coat on the enamel/dentin bond strengths and degree of conversion (DC) within the hybrid layer of a universal adhesive system (G-Bond Plus [GB]). Methods A total of 60 extracted third molars were divided into four groups for bond-strength testing, according to the adhesive strategy: GB applied as a one-step self-etch adhesive (1-stepSE); GB applied as in 1-stepSE followed by one coat of the hydrophobic resin Heliobond (2-stepSE); GB applied as a two-step etch-and-rinse adhesive (2-stepER); GB applied as in 2-stepER followed by one coat of the hydrophobic resin Heliobond (3-stepER). There were 40 teeth used for enamel microshear bond strength (μSBS) and DC; and 20 teeth used for dentin microtensile bond strength (μTBS) and DC. After restorations were constructed, specimens were stored in water (37°C/24 h) and then tested at 0.5 mm/min (μTBS) or 1.0 mm/min (μSBS). Enamel-resin and dentin-resin interfaces from each group were evaluated for DC using micro-Raman spectroscopy. Data were analyzed with two-way analysis of variance for each substrate and the Tukey test (α=0.05). Results For enamel, the use of a hydrophobic resin coat resulted in statistically significant higher mean enamel μSBS only for the ER strategy (3-stepER vs 2-stepER, p&lt;0.0002). DC was significantly improved for the SE strategy (p&lt;0.00002). For dentin, the use of a hydrophobic resin coat resulted in significantly higher dentin mean μTBS only for the SE strategy (2-stepSE vs 1-stepSE, p&lt;0.0007). DC was significantly improved in groups 2-stepSE and 3-stepER when compared with 1-stepSE and 2-stepER, respectively (p&lt;0.0009). Conclusions The use of a hydrophobic resin coat may be beneficial for the selective enamel etching technique, because it improves bond strengths to enamel when applied with the ER strategy and to dentin when used with the SE adhesion strategy. The application of a hydrophobic resin coat may improve DC in resin-dentin interfaces formed with either the SE or the ER strategy. On enamel, DC may benefit from the application of a hydrophobic resin coat over 1-stepSE adhesives.


Sign in / Sign up

Export Citation Format

Share Document