scholarly journals ARM-Based Universal 1-Wire Module Solution

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Juraj Dudak ◽  
Pavol Tanuska ◽  
Gabriel Gaspar ◽  
Peter Fabo

Sensory networks are part of a solution to monitor the required physical variables in the area of interest. Their type, the used communication protocol, plays an important role in the parameter of their complexity. One of the economical solutions is the usage of a 1-wire communication network that requires only 2 physical wires. The individual sensors or the nodes of the communication network are connected in parallel. The goal was to design and implement a universal low-power 1-wire bus module with a fully implemented 1-wire standard. As a platform for the development of such module, STM32-based microcontroller was chosen. The main advantage of this solution is the ability to utilize a sensor from a large variety of available sensors with a standardized communication interface. Our solution of the universal 1-wire module provides a single interface for sensors with different communication interfaces, while it still communicates with the standard 1-wire bus controller.

2014 ◽  
Vol 565 ◽  
pp. 179-182 ◽  
Author(s):  
Yue Tao Ge ◽  
Xiao Ming Liu ◽  
Xiao Tong Yin

In order to realize wireless remoter not only securely but also quickly data transmission in the public communication network, the Tiny Encryption Algorithm (TEA) encryption and decryption algorithm is studied in this paper and the properties of TEA are analyzed. According to communication protocol of remoter, encryption and decryption program process are designed. Because of TEA encryption, remoter transmitter and receiver can communicate strongly in the public communication network.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 765 ◽  
Author(s):  
Alessandro Zompanti ◽  
Marco Santonico ◽  
Luca Vollero ◽  
Simone Grasso ◽  
Anna Sabatini ◽  
...  

The technological development of the last few years in the field of integrated electronic components has encouraged the use of wearable electronic devices. In the biomedical field, this improvement allows the registration and analysis of numerous values, starting from environmental parameters up to the vital parameters of a subject, without interfering with the normal daily activities of the individual. In this context, the present work is focused on the design, development and evaluation of a low power wearable and wireless electronic interface able to acquire and transmit signals generated by a gas sensor, based on electrochemical technology, to monitor air quality through the measurement of O2 and CO2 concentration. Among the existing wireless technologies, it was decided to use Bluetooth Low Energy (BLE) as it allows data transmission to multiple types of external devices, such as PCs and smartphones with low power consumption.


2015 ◽  
Vol 69 (1) ◽  
pp. 156-168 ◽  
Author(s):  
Harm Greidanus ◽  
Marlene Alvarez ◽  
Torkild Eriksen ◽  
Vincenzo Gammieri

Automatic ship reporting systems (AIS – Automatic identification System, LRIT – Long Range Identification and Tracking, VMS – Vessel Monitoring System) today allow global tracking of ships. One way to display the results is in a map of current ship positions over an area of interest, the Maritime Situational Picture (MSP). The MSP is dynamic and must be created by fusing the reporting systems' messages, constructing ship tracks and predicting ship positions to correct for latency especially in the case of AIS received by satellite which forms the bulk of the data. This paper discusses the completeness of the resulting MSP and the accuracy of its positions, quantifying the additional value of the individual data sources.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6156
Author(s):  
Fernando Moreno-Cruz ◽  
Víctor Toral-López ◽  
Antonio Escobar-Molero ◽  
Víctor U. Ruíz ◽  
Almudena Rivadeneyra ◽  
...  

Although the number of Internet of Things devices increases every year, efforts to decrease hardware energy demands and to improve efficiencies of the energy-harvesting stages have reached an ultra-low power level. However, no current standard of wireless communication protocol (WCP) can fully address those scenarios. Our focus in this paper is to introduce treNch, a novel WCP implementing the cross-layer principle to use the power input for adapting its operation in a dynamic manner that goes from pure best-effort to nearly real time. Together with the energy-management algorithm, it operates with asynchronous transmissions, synchronous and optional receptions, short frame sizes and a light architecture that gives control to the nodes. These features make treNch an optimal option for wireless sensor networks with ultra-low power demands and severe energy fluctuations. We demonstrate through a comparison with different modes of Bluetooth Low Energy (BLE) a decrease of the power consumption in 1 to 2 orders of magnitude for different scenarios at equal quality of service. Moreover, we propose some security optimizations, such as shorter over-the-air counters, to reduce the packet overhead without decreasing the security level. Finally, we discuss other features aside of the energy needs, such as latency, reliability or topology, brought again against BLE.


2020 ◽  
Vol 7 ◽  
Author(s):  
Sondre A. Engebraaten ◽  
Jonas Moen ◽  
Oleg A. Yakimenko ◽  
Kyrre Glette

Multi-function swarms are swarms that solve multiple tasks at once. For example, a quadcopter swarm could be tasked with exploring an area of interest while simultaneously functioning as ad-hoc relays. With this type of multi-function comes the challenge of handling potentially conflicting requirements simultaneously. Using the Quality-Diversity algorithm MAP-elites in combination with a suitable controller structure, a framework for automatic behavior generation in multi-function swarms is proposed. The framework is tested on a scenario with three simultaneous tasks: exploration, communication network creation and geolocation of Radio Frequency (RF) emitters. A repertoire is evolved, consisting of a wide range of controllers, or behavior primitives, with different characteristics and trade-offs in the different tasks. This repertoire enables the swarm to online transition between behaviors featuring different trade-offs of applications depending on the situational requirements. Furthermore, the effect of noise on the behavior characteristics in MAP-elites is investigated. A moderate number of re-evaluations is found to increase the robustness while keeping the computational requirements relatively low. A few selected controllers are examined, and the dynamics of transitioning between these controllers are explored. Finally, the study investigates the importance of individual sensor or controller inputs. This is done through ablation, where individual inputs are disabled and their impact on the performance of the swarm controllers is assessed and analyzed.


Author(s):  
Zoleikha Abdollahi Biron ◽  
Satadru Dey ◽  
Pierluigi Pisu

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). Despite being the potentially beneficial in creating an efficient, sustainable and green transportation system, connected vehicles presents a set of specific challenges from safety and reliability standpoint. The first challenge arises from the information lost due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Secondly, faulty sensors can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a diagnostic scheme that deals with these aforementioned challenges. The effectiveness of the overall diagnostic scheme is verified via simulation studies.


Sign in / Sign up

Export Citation Format

Share Document