scholarly journals Position Tracking Control of PMSM Based on Fuzzy PID-Variable Structure Adaptive Control

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Pei Pei ◽  
Zhongcai Pei ◽  
Zhiyong Tang ◽  
Han Gu

A novel Fuzzy PID-Variable Structure Adaptive Control is proposed for position tracking of Permanent Magnet Synchronous Motor which will be used in electric extremity exoskeleton robot. This novel control method introduces sliding mode variable structure control on the basis of traditional PID control. The variable structure term is designed according to the sliding mode surface which is designed by system state equation, so it could compensate for the disturbance and uncertainty. Considering the chattering of sliding mode system, the fuzzy inference method is adopted to adjust the parameters of PID adaptively in real time online, which can attenuate chattering and improve control precision and dynamic performance of system correspondingly. In addition, compared with the traditional sliding mode control, this method takes the fuzzy PID control item to replace the equivalent control item of sliding mode variable structure control, which could avoid the control performance reduction resulted from modeling error and parameter error of system. It is proved that this algorithm can converge to the sliding surface and guarantee the stability of system by Lyapunov function. Simulation results show that Fuzzy PID-Variable Structure Adaptive Control enjoys better control precision and dynamic performance compared with traditional control method, and it improves the robustness of system significantly. Finally, the effectiveness and practicability of the algorithm are verified by the method of Rapid Control Prototyping on the semiphysical simulation test bench.

Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Dehua Zou ◽  
Yu Yan ◽  
An Zhang ◽  
...  

Purpose In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability control performance of the robot manipulator when conduct electric power operation, and effectively reduce the influence of disturbance factors on the robot motion control, this paper aims to presents a robust trajectory tracking motion control method for power cable robot manipulators based on sliding mode variable structure control theory. Design/methodology/approach Through the layering of aerial-online-ground robot three-dimensional control architecture, the robot joint motion dynamic model has been built, and the motion control model of the N-degrees of freedom robot system has also been obtained. On this basis, the state space expression of joint motion control under disturbance and uncertainty has been also derived, and the manipulator sliding mode variable structure trajectory tracking control model has also been established. The influence of the perturbation control parameters on the robot motion control can be compensated by the back propagation neural network learning, the stability of the controller has been analyzed by using Lyapunov theory. Findings The robot has been tested on a analog line in the lab, the effectiveness of sliding mode variable structure control is verified by trajectory tracking simulation experiments of different typical signals with different methods. The field operation experiment further verifies the engineering practicability of the control method. At the same time, the control method has the remarkable characteristics of sound versatility, strong adaptability and easy expansion. Originality/value Three-dimensional control architecture of underground-online-aerial robots has been proposed for industrial field applications in the ubiquitous power internet of things environment (UPIOT). Starting from the robot joint motion, the dynamic equation of the robot joint motion and the state space expression of the robot control system have been established. Based on this, a robot closed-loop trajectory tracking control system has been designed. A robust trajectory tracking motion control method for robots based on sliding mode variable structure theory has been proposed, and a sliding mode control model for the robot has been constructed. The uncertain parameters in the control model have been compensated by the neural network in real-time, and the sliding mode robust control law of the robot manipulator has been solved and obtained. A suitable Lyapunov function has been selected to prove the stability of the system. This method enhances the expansibility of the robot control system and shortens the development cycle of the controller. The trajectory tracking simulation experiment of the robot manipulator proves that the sliding mode variable structure control can effectively restrain the influence of disturbance and uncertainty on the robot motion stability, and meet the design requirements of the control system with fast response, high tracking accuracy and sound stability. Finally, the engineering practicability and superiority of sliding mode variable structure control have been further verified by field operation experiments.


2018 ◽  
Vol 37 (4) ◽  
pp. 1176-1187
Author(s):  
Xianglong Wen ◽  
Kang Yi ◽  
Chunsheng Song ◽  
Jinguang Zhang

The frequency components of vibration signal in vibration isolation system under multiple excitations are quite complex.Self-adaptive feedforward control method based on Least Mean Square algorithm has strict requirements for reference signal, which results in a certain restriction on its practical application. Sliding mode variable structure control method needs neither complicated reference signal nor accurate mathematical model. It has the strong robustness for external disturbance and system parameter perturbation, and the physical implementation is simple. To this end, application of sliding mode variable structure control method is studied. First, mathematical model of the control channel through system is established for identification. Second, the discrete sliding mode variable structure controller based on state-space model is designed to carry out simulation and experiment. The experimental result indicates that root mean square value of vibration signal after control is decreased by 57.90%, of which the amplitudes of two main frequency components 17 and 25 Hz reduce by 42.66 and 72.71%, respectively. This shows that sliding mode variable structure control is an effective control method for active vibration isolation of floating raft under multiple excitations.


2014 ◽  
Vol 596 ◽  
pp. 584-589
Author(s):  
Xi Jie Yin ◽  
Jian Guo Xu

The sliding mode variable structure control method for brushless DC motors with uncertain external disturbances and unknown loads is studied. A neural sliding mode control scheme is proposed for reducing chattering of sliding mode control. A global sliding mode manifold is designed in this approach, which guarantees that the system states can be on the sliding mode manifold at initial time and the system robustness is increased. A radial basis function neural network (RBFNN) is applied to learn the maximum of unknown loads and external disturbances. Based on the neural networks, the switching control parameters of sliding mode control can be adaptively adjusted with uncertain external disturbances and unknown loads. Therefore, the chattering of the sliding mode controller is reduced. Simulation results proved that this control scheme is valid.


2013 ◽  
Vol 721 ◽  
pp. 591-600
Author(s):  
Xu Xiao Hu ◽  
Han Tao Chen ◽  
Gang Chen ◽  
Xin Rong Xu

In order to increase the control precision in meeting the robust request, a step by step sliding mode variable structure adaptive control strategy is presented in accordance with kind of two order time-invariant controlled object. Because the chatter amplitude is decreased when the system cuts in the position of equilibrium by the small peak-to-peak value, the mathematical model is firstly established and using the adaptive algorithm determined the control quantity to achieve the target value, then uses by the step by step method about, in the proper attention to both rapidity and robustness, reduces the peak-to-peak value deviation gradually which cuts, thus obtains the high control precision.


2012 ◽  
Vol 588-589 ◽  
pp. 1628-1631
Author(s):  
Jian Min Sun ◽  
Yu Bo Yin ◽  
Ze Yang Zhou

By reviewing the development of the electronic throttle abroad, it introduces the development of foreign electronic throttle. Control theory has been constantly enriched and control functions developed from single integrated. With the development of domestic research, some car manufacturing companies and university research institutions have obtained certain results. Articles in control theory focus on the theory of PID control, fuzzy control theory, sliding mode variable structure control theory research and more mature theory, and then, the above theories were compared. Finally, according to the articles of the current development state of electronic throttle, the article describes the prospect of the electronic throttle.


2021 ◽  
pp. 65-80
Author(s):  
Chen Yu ◽  
Wu Jun ◽  
Zhang Shuo ◽  
Chen Jun ◽  
Xia Hui ◽  
...  

When a sprayer travels on a ramp or a rough road, the load exerted on each wheel changes. If an unbalanced wheel load is maintained for long periods of time, the wheels may slip, the sprayer’s manoeuvrability is affected, and a rollover accident may occur. In this study, the air suspension of a self-propelled sprayer chassis was investigated, and the potential load imbalance conditions of the sprayer suspension were analysed. A mathematical model of the inflation/deflation of the suspension was established based on air nonlinear thermodynamics and vertical dynamics theory and a ¼-scale vertical dynamics model of the sprayer chassis was developed. A control strategy to balance the sprayer’s wheel load was developed. Considering the nonlinear characteristics of the air suspension, a sliding mode variable structure control method was used to balance the wheel load. Simulation experiments were conducted under different working conditions. The simulation results showed that the sliding mode variable structure control provided good control response and precision. The proposed auto load-levelling controller was tested under different working conditions, including different roll and pitch angles and navigating a rough road; the controller successfully changed the load on each spring to ensure that the sprung mass of the suspension was equal and the wheel load was balanced. The results of this study provide reference information for auto load-levelling control of large sprayers.


2014 ◽  
Vol 1028 ◽  
pp. 186-190
Author(s):  
Hong Cheng Zhou ◽  
Zhi Peng Jiang

The servo control methods of 6-DOF motion configuration are researched. Based on analysis for characteristic of the motion configuration, the control strategy and control law used on the motion control system are presented. The controller in velocity tracking loop and location loop are respectively designed by frequency correcting method and normal control method which belongs to classical control theory. Sliding mode variable structure control method is presented for location control law designing, against the super low velocity creep caused by friction disturbance, so that the problem of location control loop low velocity creeping is solved, and a simulating experimentation demonstrate the effectiveness of the proposed approach.


2018 ◽  
Vol 214 ◽  
pp. 03002 ◽  
Author(s):  
Hua Deng ◽  
Renqiang Wang ◽  
Jingdong Li ◽  
Dawei Chen ◽  
Jianming Sun ◽  
...  

Intelligent control for USV with input saturation based on RBF network was proposed. Firstly, sliding surfaces with integral were designed on the basis of the sliding mode variable structure control technology. Secondly, RBF network was applied to approximate compensate the input saturation of system, and which was optimized by Genetic Algorithms. Finally, the control algorithm for USV was deduced by backstepping method with Lyapunov theory on the basis of sliding mode control. Relevant simulations show the control method is available for USV motion control.


Compared with other control methods, the biggest advantage of using sliding mode variable structure control method lies in its strong robustness which could be used to directly handle the strong nonlinear flight control system. However, this control method requires switching between different switching surfaces, which will inevitably cause buffeting problems, so that the energy consumption increases. Therefore, how to overcome this disadvantage to achieve the superior performance of sliding mode variable structure control method is the current research focus. This paper studies the trajectory tracking of under-actuated VTOL aircraft with three degrees of freedom and two control inputs under various coupling effects. By the input and coordinate transformation, the dynamic equation of the system is transformed into decoupled standard under-actuated form and the sliding mode controller is designed. Then Lyapunov stability theorem is used to derive sliding mode control law which could ensure that the system asymptotically converges to the given trajectory. The simulation has demonstrated the effectiveness of this method


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 523 ◽  
Author(s):  
Ying Xu ◽  
Zefeng Lu ◽  
Xin Shan ◽  
Wenhao Jia ◽  
Bo Wei ◽  
...  

This paper discusses an automatic parking control method based on the combination of the sliding mode variable structure control (SMVSC) and fuzzy logical control. SMVSC is applied to drive the vehicle from a random initial position and pose, to the designated parking position and pose. Then, the vehicle is driven from the designated parking position to the target parking slot using the method of fuzzy logical control, whose rules are limited to the range of the effective initial position. To combine SMVSC with the fuzzy logical control, the experimental results demonstrate that effective parking can be guaranteed, even if the initial position is out of the effective parking area of the fuzzy logical control.


Sign in / Sign up

Export Citation Format

Share Document