scholarly journals Vitamin D Promotes MSC Osteogenic Differentiation Stimulating Cell Adhesion and αVβ3 Expression

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Francesca Posa ◽  
Adriana Di Benedetto ◽  
Elisabetta A. Cavalcanti-Adam ◽  
Graziana Colaianni ◽  
Chiara Porro ◽  
...  

Vitamin D (Vit D) by means of its biological active form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), has a protective effect on the skeleton by acting on calcium homeostasis and bone formation. Furthermore, Vit D has a direct effect on mesenchymal stem cells (MSCs) in stimulating their osteogenic differentiation. In this work, we present for the first time the effect of 1,25(OH)2D3 on MSC adhesion. Considering that cell adhesion to the substrate is fundamental for cell commitment and differentiation, we focused on the expression of αVβ3 integrin, which has a key role in the commitment of MSCs to the osteoblastic lineage. Our data indicate that Vit D increases αVβ3 integrin expression inducing the formation of focal adhesions (FAs). Moreover, we assayed MSC commitment in the presence of the extracellular matrix (ECM) glycoprotein fibronectin (FN), which is able to favor cell adhesion on surfaces and also to induce osteopontin (OPN) expression: this suggests that Vit D and FN synergize in supporting cell adhesion. Taken together, our findings provide evidence that Vit D can promote osteogenic differentiation of MSCs through the modulation of αVβ3 integrin expression and its subcellular organization, thus favoring binding with the matrix protein (FN).

2002 ◽  
pp. 45-59 ◽  
Author(s):  
K W Colston ◽  
C M√∏rk Hansen

It is now well established that, in addition to its central role in the maintenance of extracellular calcium levels and bone mineralization, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, also acts as a modulator of cell growth and differentiation in a number of cell types, including breast cancer cells. The anti-proliferative effects of 1,25(OH)(2)D(3) have been linked to suppression of growth stimulatory signals and potentiation of growth inhibitory signals, which lead to changes in cell cycle regulators such as p21(WAF-1/CIP1) and p27(kip1), cyclins and retinoblastoma protein as well as induction of apoptosis. Such studies have led to interest in the potential use of 1,25(OH)(2)D(3) in the treatment or prevention of certain cancers. Since this approach is limited by the tendency of 1,25(OH)(2)D(3) to cause hypercalcaemia, synthetic vitamin D analogues have been developed which display separation of the growth regulating effects from calcium mobilizing actions. This review examines mechanisms by which 1,25(OH)(2)D(3) and its active analogues exert both anti-proliferative and pro-apoptotic effects and describes some of the synthetic analogues that have been shown to be of particular interest in relation to breast cancer.


2016 ◽  
Vol 37 (5) ◽  
pp. 521-547 ◽  
Author(s):  
Peter J. Tebben ◽  
Ravinder J. Singh ◽  
Rajiv Kumar

AbstractHypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.


2018 ◽  
Vol 314 (4) ◽  
pp. H753-H765 ◽  
Author(s):  
Nasim Jamali ◽  
Christine M. Sorenson ◽  
Nader Sheibani

Vitamin D deficiency is linked to pathogenesis of many diseases including cardiovascular, cancer, and various eye diseases. In recent years, important roles for vitamin D in regulation of immune function, inflammation, angiogenesis, and aging have been demonstrated. Thus, vitamin D and its analogs have been evaluated for the treatment of various types of cancer and chronic diseases. We have previously shown that the active form of vitamin D [1,25(OH)2D3] is a potent inhibitor of angiogenesis. This activity is consistent with the important role proposed for vitamin D and its analogs in the mitigation of tumor growth through inhibition of angiogenesis. Here, we review the important nutritional value of vitamin D and the abnormalities linked to its deficiency. We will explore its potential role as a regulator of angiogenesis and vascular cell function and the role vitamin D receptor (VDR) expression plays in these activities during vascular development and neovascularization. Our studies have established an important role for 1,25(OH)2D3 and VDR in the regulation of perivascular supporting cell function. In addition, the interaction of 1,25(OH)2D3 and VDR is essential for these activities and inhibition of neovascularization. Delineating the signaling pathways involved and identification of genes that are the target of 1,25(OH)2D3 regulation in vascular cells will allow us to identify novel pathways that are targets for regulation of vascular function and angiogenesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3946-3946
Author(s):  
Jumpei Teramachi ◽  
Noriyoshi Kurihara ◽  
John M Chirgwin ◽  
G David Roodman

Abstract Abstract 3946 Vitamin D plays multiple roles in normal and malignant cell function, regulating cell differentiation and proliferation as well as bone homeostasis. Epidemiologic studies suggest that low levels of vitamin D contribute to the progression of lung cancer, breast cancer, colorectal and prostate cancer as well as lymphoma and melanoma. However, the role of vitamin D in multiple myeloma (MM) is unclear. In contrast to its growth inhibition of solid tumors, vitamin D has little anti-proliferative effects on MM cells. The physiological responses of myeloma cells to vitamin D are unknown, as are its effects on the marrow microenvironment in myeloma bone disease. Vitamin D insufficiency or deficiency has been documented in the majority of myeloma patients. Vitamin D receptor (VDR) is expressed by RPMI8226 cells, but it is unknown if this is a common finding in MM. Further, the functional consequences of VDR expression in myeloma cells are not well characterized. We reported osteoclast (OCL) precursors from patients with Paget's disease (PD) of bone were hypersensitive to 1,25-(OH)2D3 (1,25-D3) and formed OCL at physiologic concentrations of 1,25-D3 rather than the pharmacologic concentrations of 1,25-D3 required for normal OCL formation in vitro. This enhanced sensitivity to 1,25-D3 was due to increased expression of a novel VDR co-activator, TAF12, a member of the TFIID transcription complex. We found TAF12 expression was increased in marrow stromal cells (BMSC) by increased NFκB signaling and enhanced the capacity of BMSC to produce RANKL in response to low levels of 1,25-D3. Because the marrow microenvironment in MM and PD has many similarities in terms of increased OCL activity and enhanced NFκB signaling, we determined if MM cells induced TAF12 expression in BMSC of MM patients and if 1,25-D3 could enhanced RANKL production in BMSC of MM patients, even in patients with low levels of 1,25-D3. We found that both BMSC and CD138+ primary myeloma cells from MM patients expressed increased TAF12 levels compared to normal BMSC and CD138+ bone marrow cells. Four of four human MM cell lines (MM1.S, ANBL6, JJN3 and RPMI8266) expressed VDR, TAF12 and ATF7, which potentiates TAF12-mediated gene transcription. MM1.S and JJN3 but not RPMI8266 produced increased amounts of RANKL in response to very low levels of 1,25-D3. Further, 1,25-D3 increased VEGF, DKK1 and α4β1 integrin expression by MM1.S, JJN3 and RPMI8266 cells and enhanced adhesive interactions between MM cells and BMSC that increase MM growth. To confirm the role of TAF12 in the increased RANKL expression by MM cells treated with 1,25-D3, we established a stable TAF12 anti-sense JJN3 cell line (AS-TAF12-JJN3). AS-TAF12-JJN3 cells had markedly decreased RANKL production, VDR content and CYP24A1 accumulation in response to 1,25-D3. MM1.S and JJN3 myeloma cells treated with a VDR antagonist (TEI-9647) decreased RANKL production and α4β1 integrin expression in response to low levels of 1,25-D3. Further, 1,25-D3 induced VCAM-1 expression on normal human BMSC. Co-culture of JJN3 cells with BMSC treated with 1,25-D3 induced both MM cell growth and cell adhesion. In contrast, co-culture with AS-TAF12-JJN3 cells resulted in decreased cell growth and cell adhesion. Further, 1,25-D3 treatment of mouse OCL precursors co-cultured with JJN3 cells, but not AS-TAF12-JJN3 cells, increased OCL formation. These results suggest that increased TAF12 levels in MM cells and BMSC allow low levels of 1,25-D3 significantly to increase RANKL production by both MM cells and BMSC, and enhance adhesive interactions between MM cells and BMSC, thus increasing MM cell growth and OCL formation. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-1
Author(s):  
Francesca Posa ◽  
Adriana Di Benedetto ◽  
Elisabetta A. Cavalcanti-Adam ◽  
Graziana Colaianni ◽  
Chiara Porro ◽  
...  

2004 ◽  
Vol 17 (2) ◽  
pp. 241-248 ◽  
Author(s):  
James C. Fleet ◽  
Jie Hong ◽  
Zhentao Zhang

AbstractAlthough the biological requirement for vitamin D can be met by epidermal exposure to UV light, there are a number of conditions where this production does not occur or is not sufficient to meet biological needs. When this happens, vitamin D must be consumed and is a nutrient. However, two distinct observations have caused researchers to rethink certain dogma in vitamin D biology. First, it appears that in addition to the hormonally active form of 1,25 dihydroxyvitamin D (1,25(OH)2D), circulating levels of 25 hydroxyvitamin D have a critical importance for optimal human health. This and other data suggest that extra-renal production of 1,25(OH)2D contributes to Ca homeostasis and cancer prevention. Second, in addition to its role in the transcriptional activation of genes through the vitamin D receptor there is now compelling evidence that 1,25(OH)2D has a second molecular mode of action; the rapid activation of second-messenger and kinase pathways. The purpose of this second mode of action is only now being explored. The present review will discuss how these two areas are reshaping our understanding of vitamin D metabolism and action.


2007 ◽  
Vol 20 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Femke Baeke ◽  
Evelyne Van Etten ◽  
Lut Overbergh ◽  
Chantal Mathieu

1,25-Dihydroxyvitamin D3(1,25(OH)2D3), the active form of vitamin D3, is a central player in Ca and bone metabolism. More recently, important immunomodulatory effects have been attributed to this hormone. By binding to its receptor, the vitamin D receptor, 1,25(OH)2D3regulates the expression of various genes and consequently affects the behaviour of different cell types within the immune system. 1,25(OH)2D3can potently inhibit pathogenic T cells and gives rise to elevated numbers of regulatory T cells via the induction of tolerogenic dendritic cells. These immunomodulatory activities of 1,25(OH)2D3have also been proven usefulin vivo: administration of 1,25(OH)2D3in several animal models can prevent or cure different autoimmune diseases and graft rejection. To overcome the dose-limiting side effects of 1,25(OH)2D3on Ca and bone, less calcaemic structural analogues (alone or in combination with synergistically acting drugs or bone-resorption inhibitors) have been successfully used in animal models. Furthermore, as 1,25(OH)2D3also contributes to host defence against infectious agents by the induction of antimicrobial responses, this molecule might provide a new strategy to deal with drug-resistant infections. According to the pleiotropic effects of 1,25(OH)2D3in the immune system, increasing epidemiological data underline the importance of adequate vitamin D intakes in reducing the risk of several autoimmune diseases and infections such as tuberculosis.


2019 ◽  
Vol 13 (1) ◽  
pp. 45-53
Author(s):  
Ami Febriza ◽  
Mochammad Hatta ◽  
Rosdiana Natzir ◽  
Vivien N.A. Kasim ◽  
Hasta H. Idrus

Antimicrobial peptide is an effector molecule from the natural immune system which plays a central role in defense as an antimicrobial. Cathelicidin is one of the antimicrobial peptides. Human only has one cathelicidin antimicrobial peptide called LL-37 or hCAP18. The detailed mechanism on CAMP (Cathelicidin Antimicrobial Peptide) gene regulation is still unknown, however, cathelicidin is found to have upregulation when there is bacterial infection. The most effective expression inducer of CAMP gene is 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3), which is the active form of vitamin D. Vitamin D mediates cathelicidin synthesis through the expression of Vitamin D Receptor (VDR), then the interaction activates CAMP gene to express cathelicidin. The work mechanisms of cathelicidin against bacterial infection include damaging the bacterial cell membrane, inducing autophagy process of macrophage cell, neutralizing LPS produced by bacteria, and chemotactic activities of PMNs, monocytes and lymphocytes.


2013 ◽  
Vol 20 (2) ◽  
pp. R31-R47 ◽  
Author(s):  
Carlien Leyssens ◽  
Lieve Verlinden ◽  
Annemieke Verstuyf

The active form of vitamin D3, 1,25-dihydroxyvitamin D3(1,25(OH)2D3), is mostly known for its importance in the maintenance of calcium and phosphate homeostasis. However, next to its classical effects on bone, kidney and intestine, 1,25(OH)2D3also exerts antineoplastic effects on various types of cancer. The use of 1,25(OH)2D3itself as treatment against neoplasia is hampered by its calcemic side effects. Therefore, 1,25(OH)2D3-derived analogs were developed that are characterized by lower calcemic side effects and stronger antineoplastic effects. This review mainly focuses on the role of 1,25(OH)2D3in breast, prostate and colorectal cancer (CRC) and the underlying signaling pathways. 1,25(OH)2D3and its analogs inhibit proliferation, angiogenesis, migration/invasion and induce differentiation and apoptosis in malignant cell lines. Moreover, prostaglandin synthesis and Wnt/b-catenin signaling are also influenced by 1,25(OH)2D3and its analogs. Human studies indicate an inverse association between serum 25(OH)D3values and the incidence of certain cancer types. Given the literature, it appears that the epidemiological link between vitamin D3and cancer is the strongest for CRC, however more intervention studies and randomized placebo-controlled trials are needed to unravel the beneficial dose of 1,25(OH)2D3and its analogs to induce antineoplastic effects.


Reports ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Ewa Marcinkowska

Vitamin D is synthesized in the skin from 7-dehydrocholesterol subsequently to exposure to UVB radiation or is absorbed from the diet. Vitamin D undergoes enzymatic conversion to its active form, 1,25-dihydroxyvitamin D (1,25D), a ligand to the nuclear vitamin D receptor (VDR), which activates target gene expression. The best-known role of 1,25D is to maintain healthy bones by increasing the intestinal absorption and renal reuptake of calcium. Besides bone maintenance, 1,25D has many other functions, such as the inhibition of cell proliferation, induction of cell differentiation, augmentation of innate immune functions, and reduction of inflammation. Significant amounts of data regarding the role of vitamin D, its metabolism and VDR have been provided by research performed using mice. Despite the fact that humans and mice share many similarities in their genomes, anatomy and physiology, there are also differences between these species. In particular, there are differences in composition and regulation of the VDR gene and its expression, which is discussed in this article.


Sign in / Sign up

Export Citation Format

Share Document