scholarly journals Silver Nanoparticles Obtained by Aqueous or Ethanolic Aloe vera Extracts: An Assessment of the Antibacterial Activity and Mercury Removal Capability

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ederley Vélez ◽  
Gloria Campillo ◽  
Gladis Morales ◽  
César Hincapié ◽  
Jaime Osorio ◽  
...  

Silver nanoparticles (AgNPs) were synthesized by chemical reduction of Ag+ ions (from silver nitrate AgNO3), using aqueous or ethanolic Aloe vera extracts as reducing, stabilizing, and size control agent. The nanoparticles’ sizes were between 2 and 7 nm for ethanolic extract and between 3 and 14 nm for aqueous extract, as measured by High-Resolution Transmission Electron Microscope (HRTEM). The antibacterial activity against a mesophilic microorganism, Kocuria varians, a Gram-positive coccus, was measured by counting bacterial colonies in agar plate for both extracts. We found that 4% effective concentration is the lowest concentration that completely inhibited visible growth. Mercury removal was investigated by Atomic Absorption Spectroscopy (AAS) measurements, where it was shown that it is not necessary to use high concentrations of nanoparticles for effective removal of mercury inasmuch as with a 20% V/V concentration of both extracts; the Hg(II) removal percentage was above 95%. These results show that the mercury remaining unremoved from the different essays is below the level allowed by World Health Organization (WHO) and the Environmental Protection Agency (EPA).

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2326
Author(s):  
Entesar Ali Ganash ◽  
Reem Mohammad Altuwirqi

In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.


2016 ◽  
Vol 87 (19) ◽  
pp. 2407-2419 ◽  
Author(s):  
Qingqing Zhou ◽  
Jingchun Lv ◽  
Yu Ren ◽  
Jiayi Chen ◽  
Dawei Gao ◽  
...  

This study presented a simple and environmentally friendly method of in situ synthesis of silver nanoparticles (AgNPs) on cotton fabrics for durable ultraviolet (UV) protection and antibacterial activity using Aloe vera leaf extraction (AVE) as a reducing and stabilizing agent. Cotton fabrics were pretreated in water, and then immersed in AgNO3 and AVE, respectively. Cotton fabrics were characterized by small angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, UV protection, antibacterial activity, and laundering durability. Comparing with the smooth surface of the control cotton fabric, SEM and energy dispersive X-ray spectrometry (EDX) results showed that there were a considerable number of Ag2O and AgNPs loading on the surface of the pretreated and Ag loaded cotton fabrics. The XRD pattern indicated, respectively, the existence of Ag2O and AgNPs, the structures of which were similar to JCPDS File No.65-3289 and JCPDS File No. 01-071-4613 on the pretreated and Ag loaded cotton fabrics. The pretreated and Ag loaded cotton fabrics showed excellent UV protection, antibacterial activity, and laundering durability, especially the Ag loaded cotton fabric, of which the UV protection factor value and transmission of UVA were 148 and 1.11%, respectively, after 20 washing cycles, and the clear zone width was more than 4 mm against E. coli or S. aureus. AgNPs facilitated the improvement of the thermal property of the cotton fabrics. Thus this facile in situ reduction of AgNPs with AVE may bring a promising and green strategy to produce functional textiles.


2019 ◽  
Vol 50 (4) ◽  
Author(s):  
Maeh &et al.

 This study was aimed to produce silver nanoparticles by fruits extract of Juniperus phoenicea and comparison between the ethanolic extract and nano extract through the antioxidant, antibacterial, anti-parasite and cytotoxicity against prostate cancer. The synthesis of silver nanoparticles was shown by many characterizing techniques: UV, FTIR, XRD and SEM. Nano extract exhibited a higher antibacterial, antioxidant, antiparasite compared to ethanolic extract and higher cytotoxicity activity. The nano extract exhibited higher antibacterial activity compared with antibiotics. Finally, we study the toxicity of J. phoenicea by Inhibition of RBC hemolysis by H2O2, the results exhibited the highest inhibition activity of J. phoenicea against H2O2. The nanoextract of J. phoenicea can be used effectively in the production of potential antioxidant, antiparasite antimicrobial and anticancer.


2020 ◽  
Author(s):  
Shahad A. Raheem ◽  
Alaa H. Alfatlawi

Abstract. The objective of this study is to prepare a cellulose paper was impregnated with silver nanoparticles (AgNPs) for the purpose of water purification (Disinfection (removal of Escherichia Coli, Staphylococcus Aureus, Enterococcus Faecalis, Enterobacter Aerogenes, Klebsiella Pneumoniae, and Proteus mirabilis) and filtration). AgNPs papers were prepared by chemical reduction of silver nitrate (AgNO3) with various concentrations (0.005 M, 0.015 M, 0.03 M, and 0.05 M) using sodium borohydride (NaBH4) as a reducing agent. Two ratios of NaBH4 / AgNO3 of 2 : 1 and 10 : 1 were used to show the effect of reduction on the formation and removal efficiencies of AgNPs. AgNPs papers were characterized using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). An acid digestion using HCL acid followed by analyzing the samples in Atomic Absorption Spectrometer (ASS) was conducted to measure the silver concentration in AgNPs papers. TEM images showed that the silver nanoparticles size in the papers varies from 1.3 to 75 nm. Water samples, after filtration through AgNPs papers, were analyzed using (ASS) to measure the silver concentration in the effluent water. AgNPs paper antibacterial efficiency ranged (99 % to 100 %) for both reduction ratios. The average silver content in the effluent water for the three replicates ranged from 0 to 0.082 mg/L which meets the United States- Environmental Protection Agency (US-EPA) guideline for drinking water of less than 0.1 mg/L Turbidity tests showed that these papers can be usefully used as a point of use filters as the turbidity reduced to less than 1 NTU.


2015 ◽  
Vol 114 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
Devakumar Dinesh ◽  
Kadarkarai Murugan ◽  
Pari Madhiyazhagan ◽  
Chellasamy Panneerselvam ◽  
Palanisamy Mahesh Kumar ◽  
...  

2019 ◽  
Vol 10 (11) ◽  
pp. 3469
Author(s):  
K Sathvika ◽  
S Rajeshkumar ◽  
Anitha Roy ◽  
J Santhoshkumar ◽  
T Lakshmi ◽  
...  

2019 ◽  
Vol 45 (9) ◽  
pp. 4463-4472 ◽  
Author(s):  
Cheng-Ho Chen ◽  
Yin-Chen Lin ◽  
Ching-Fong Mao ◽  
Wei-Tung Liao

2019 ◽  
Vol 57 (3) ◽  
pp. 309
Author(s):  
La Thi Thai Ha ◽  
Chau Ngoc Mai

It has been found for a long time that chitosan (CS) and silver nanoparticles (AgNPs) have outstanding antibacterial activities but there were some drawbacks restricting their wide utilization. In this research, CS modified is combined with AgNPs to expand applications and enhance the antibacterial activities. The colloid of CS and AgNPs (CS/Ag) was synthesized via chemical reduction while grafting copolymerization was carried out with monomer n-butyl acrylate (BA) and initiator tert-butyl hydroperoxide (TBHP) generating composite between CS-g-BA/Ag. The effects of parameters on synthesizing CS-g-BA/Ag composite were studied by determining the grafting percentage (G%) and grafting efficiency (E%).


Sign in / Sign up

Export Citation Format

Share Document