scholarly journals Models of Anisotropic Self-Gravitating Source in Einstein-Gauss-Bonnet Gravity

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
G. Abbas ◽  
M. Tahir

In this paper, we have studied gravitational collapse and expansion of nonstatic anisotropic fluid in 5D Einstein-Gauss-Bonnet gravity. For this purpose, the field equations have been modeled and evaluated for the given source and geometry. The two metric functions have been expressed in terms of parametric form of third metric function. We have examined the range of parameter β (appearing in the form of metric functions) for which Θ, the expansion scalar, becoming positive/negative leads to expansion/collapse of the source. The trapped surface condition has been explored by using definition of Misner-Sharp mass and auxiliary solutions. The auxiliary solutions of the field equations involve a single function that generates two types of anisotropic solutions. Each solution can be represented in term of arbitrary function of time; this function has been chosen arbitrarily to fit the different astrophysical time profiles. The existing solutions forecast gravitational expansion and collapse depending on the choice of initial data. In this case, wall to wall collapse of spherical source has been investigated. The dynamics of the spherical source have been observed graphically with the effects of Gauss-Bonnet coupling term α in the case of collapse and expansion. The energy conditions are satisfied for the specific values of parameters in both solutions; this implies that the solutions are physically acceptable.

2021 ◽  
Vol 18 (03) ◽  
pp. 2150042
Author(s):  
G. Abbas ◽  
M. Tahir ◽  
M. R. Shahzad

In this paper, we have explored the non-static anisotropic gravitational collapse and expansion solutions in Rastall theory of gravity. The field equations have been formulated for the non-static and inhomogeneous gravitating source. The Misner–Sharp mass function, auxiliary solution and trapped condition have been used to obtained a trapped surface. The auxiliary solutions have been used to obtain the expansion and collapse solutions; these solutions depend on [Formula: see text] and parameter [Formula: see text] (which appears due to parametric form of metric components); also the range of parameter [Formula: see text] has been examined. The expansion scalar [Formula: see text] depends on parameter [Formula: see text], in the case of expansion [Formula: see text] for [Formula: see text], while for collapse [Formula: see text] with [Formula: see text]. Also, the dynamics of the gravitating spherical source has been discussed graphically with the effects of Rastall parameter [Formula: see text]. For the physically reasonable fluid, the validity of energy conditions has been discussed for expansion and collapse solutions with the various values of [Formula: see text].


2019 ◽  
Vol 34 (05) ◽  
pp. 1950042
Author(s):  
G. Abbas ◽  
Shahid Qaisar ◽  
Hamood Ur Rehman ◽  
M. Younas

In this research paper, we address the issues of expansion and gravitational collapse of anisotropic spherical source in the presence of cosmological constant. For this purpose, we have solved the Einstein field equations with gravitating source and cosmological constant. The absence of radial heat flux in the gravitating source provide the parametric form of two-metric functions in terms of a single-metric function. The expansion scalar and the mass function of the gravitating source is evaluated for the given metric. The trapping condition is applied to mass function which implies the existence of horizons, like the horizons of Schwarzschild de-Sitter black holes. The trapping condition provides the parametric form of the unknown metric function. The value of expansion scalar has been analyzed in detail to see its positivity and negativity, which correspond to expansion and collapse, respectively. So, the values of parameter [Formula: see text] for which expansion scalar is positive have been used to analyze the other physical variables including density, pressures and anisotropy. The same quantities have been evaluated for the values of [Formula: see text] that result in the negative values of expansion scalar leading to collapse. The effects of positive cosmological constant have been noted in both expansion and collapse solutions. Due to the presence of cosmological constant after collapse, there would occur inner and outer horizons or a unique horizon depending on the value of mass of the gravitating source.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Faizuddin Ahmed

We present a cylindrically symmetric, Petrov type D, nonexpanding, shear-free, and vorticity-free solution of Einstein’s field equations. The spacetime is asymptotically flat radially and regular everywhere except on the symmetry axis where it possesses a naked curvature singularity. The energy-momentum tensor of the spacetime is that for an anisotropic fluid which satisfies the different energy conditions. This spacetime is used to generate a rotating spacetime which admits closed timelike curves and may represent a Cosmic Time Machine.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950046 ◽  
Author(s):  
M. Zubair ◽  
Rabia Saleem ◽  
Yasir Ahmad ◽  
G. Abbas

This paper is aimed to evaluate the existence of wormholes in viable [Formula: see text] gravity models (where [Formula: see text] is the scalar curvature and [Formula: see text] is the trace of stress–energy tensor of matter). The exact solutions for energy–momentum tensor components depending on different shapes and redshift functions are calculated without some additional constraints. To investigate this, we consider static spherically symmetric geometry with matter contents as anisotropic fluid and formulate the Einstein field equations for three different [Formula: see text] models. For each model, we derive expression for weak and null energy conditions and graphically analyzed its violation near the throat. It is really interesting that wormhole solutions do not require the presence of exotic matter — like that in general relativity. Finally, the stability of the solutions for each model is presented using equilibrium condition.


2006 ◽  
Vol 15 (07) ◽  
pp. 991-999 ◽  
Author(s):  
P. R. PEREIRA ◽  
M. F. A. DA SILVA ◽  
R. CHAN

We study space–times having spherically symmetric anisotropic fluid with self-similarity of zeroth kind. We find a class of solutions to the Einstein field equations by assuming a shear-free metric and that the fluid moves along time-like geodesics. The energy conditions, and geometrical and physical properties of the solutions are studied and we find that it can be considered as representing an accelerating universe. At the beginning all the energy conditions were fulfilled but beyond a certain time (a maximum geometrical radius) none of them is satisfied, characterizing a transition from normal matter (dark matter, baryon matter and radiation) to dark energy.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050109
Author(s):  
G. Mustafa ◽  
Tie-Cheng Xia

In this current work, we explore an anisotropic compact model with radius 9.1 km and mass 2.01 [Formula: see text] in the regime of Karmarkar condition in Rastall theory. To solve the extended field equations for the Rastall framework we have employed the Karmarkar condition. We investigate a comparative discussion to show the physical acceptance of Karmarkar condition in Rastall theory. Our obtained solutions, i.e. metric functions, density function and both the pressure components have well-behaved nature. The energy bounds and the equilibrium stability in the background of modified TOV equation (for Rastall proposal) are also discussed in this study. The parameter [Formula: see text] from [Formula: see text] metric function has some important role in this current model. All the calculated properties have different natures for [Formula: see text] to [Formula: see text]. In this current study we also discuss some physical parameters of this current model to check the validity of the model. In the end, it is concluded that our model is acceptable physically and geometrically.


2006 ◽  
Vol 15 (09) ◽  
pp. 1407-1417 ◽  
Author(s):  
C. F. C. BRANDT ◽  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA

We study the evolution of an anisotropic fluid with kinematic self-similarity of the second kind. We found a class of solution to the Einstein field equations by assuming an equation of state where the radial pressure of the fluid is proportional to its energy density (pr = ωρ) and that the fluid moves along time-like geodesics. The self-similarity requires ω = -1. The energy conditions, geometrical and physical properties of the solutions are studied. We have found that, depending on the self-similar parameter α, they may represent a black hole or a naked singularity.


2003 ◽  
Vol 12 (07) ◽  
pp. 1315-1332 ◽  
Author(s):  
C. F. C. BRANDT ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA ◽  
R. CHAN

We study spacetimes of spherically symmetric anisotropic fluid with homothetic self-similarity. We find a class of solutions to the Einstein field equations by assuming that the tangential pressure of the fluid is proportional to its radial one and that the fluid moves along time-like geodesics. The energy conditions, and geometrical and physical properties of these solutions are studied and found that some of them represent gravitational collapse of an anisotropic fluid.


2020 ◽  
Vol 35 (13) ◽  
pp. 2050103 ◽  
Author(s):  
Riaz Ahmed ◽  
G. Abbas

In this paper, we have used the Karmarkar condition to the spherically symmetric non-static radiating star experiencing dissipative gravitational collapse with a heat flux in the framework of [Formula: see text] gravity, (where [Formula: see text] is Ricci scalar which replaces Lagrangian density and [Formula: see text] is the trace of energy–momentum tensor). To obtain the ultimate results of the gravitational field equations in [Formula: see text] scenario, we take a linear form of the function as [Formula: see text]. In this connection, the Karmarkar condition along with boundary condition generates a model of radiating star and enables us to completely indicate the spatial presence of gravitational potentials. Vadiya’s exterior solution across a time-like hypersurface is smoothly matched to the interior solution which allows to study the physical conduct of our model under consideration. Furthermore, we have analyzed the energy conditions of radiating star in [Formula: see text] gravity and analyzed the physical behavior of thermodynamics parameters which provide a detailed discussion of the model. For coupling parameter [Formula: see text], we successfully obtain the standard results of General Relativity.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950134
Author(s):  
Kiran Pant ◽  
Pratibha Fuloria

In this paper, we generate a new generalized solution for modeling of compact anisotropic astrophysical configurations by using Karmarkar condition of embedded class 1 spacetime manifold. We demonstrate that the new solution satisfies all required physical conditions. We investigate several physical properties of compact star models, i.e. Vela X-1 (Mass [Formula: see text][Formula: see text], radius = [Formula: see text][Formula: see text]km), PSRJ [Formula: see text] (Mass [Formula: see text][Formula: see text], radius = [Formula: see text][Formula: see text]km) and PSRJ [Formula: see text] (Mass [Formula: see text][Formula: see text], radius = [Formula: see text][Formula: see text]km) in conformity with the observational data. The proposed solution is free from singularities, satisfies causality condition and displays well-behaved nature inside the anisotropic configurations. All energy conditions and hydrostatic equilibrium condition are well defined inside the anisotropic fluid spheres. The adiabatic index throughout the stellar interior is greater than [Formula: see text] and the compactification factor lies within the Buchdahl limit [Formula: see text]. We study the physical features of the solution in detail, analytically as well as graphically for compact star Vela X-1 with [Formula: see text] ranging from [Formula: see text] to [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document