Embedded class solutions of an anisotropic object in Rastall gravity

2020 ◽  
Vol 35 (21) ◽  
pp. 2050109
Author(s):  
G. Mustafa ◽  
Tie-Cheng Xia

In this current work, we explore an anisotropic compact model with radius 9.1 km and mass 2.01 [Formula: see text] in the regime of Karmarkar condition in Rastall theory. To solve the extended field equations for the Rastall framework we have employed the Karmarkar condition. We investigate a comparative discussion to show the physical acceptance of Karmarkar condition in Rastall theory. Our obtained solutions, i.e. metric functions, density function and both the pressure components have well-behaved nature. The energy bounds and the equilibrium stability in the background of modified TOV equation (for Rastall proposal) are also discussed in this study. The parameter [Formula: see text] from [Formula: see text] metric function has some important role in this current model. All the calculated properties have different natures for [Formula: see text] to [Formula: see text]. In this current study we also discuss some physical parameters of this current model to check the validity of the model. In the end, it is concluded that our model is acceptable physically and geometrically.

Author(s):  
Flavia Rocha ◽  
Rubens Marinho ◽  
Manuel Malheiro ◽  
Geanderson Araújo Carvalho ◽  
Gerson Otto Ludwig

The expansion of both sides of Einstein’s field equations in the weak-field approximation, up to terms of order [Formula: see text] is derived. This new approach leads to an extended form of gravitomagnetism (GEM) properly named as Beyond Gravitomagnetism (BGEM). The metric of BGEM includes a quadratic term in the gravitoelectric potential n the time and also space metric functions in contrast with first post-Newtonian [Formula: see text]PN approximation where the quadratic term appears only in the time metric function. This nonlinear term does not appear in conventional GEM, but is essential in achieving the exact value of Mercury’s perihelion advance as we explicitly show. The new BGEM metric is also applied to the classical problem of light deflection by the Sun, but the contribution of the new nonlinear terms produce higher-order terms in this problem and can be neglected, giving the correct result obtained already in the Lense–Thirring (GEM) approximation. The BGEM approximation also provides new terms that depend on the dynamics of the system, which may bring new insights into galactic and stellar physics.


2019 ◽  
Vol 34 (05) ◽  
pp. 1950042
Author(s):  
G. Abbas ◽  
Shahid Qaisar ◽  
Hamood Ur Rehman ◽  
M. Younas

In this research paper, we address the issues of expansion and gravitational collapse of anisotropic spherical source in the presence of cosmological constant. For this purpose, we have solved the Einstein field equations with gravitating source and cosmological constant. The absence of radial heat flux in the gravitating source provide the parametric form of two-metric functions in terms of a single-metric function. The expansion scalar and the mass function of the gravitating source is evaluated for the given metric. The trapping condition is applied to mass function which implies the existence of horizons, like the horizons of Schwarzschild de-Sitter black holes. The trapping condition provides the parametric form of the unknown metric function. The value of expansion scalar has been analyzed in detail to see its positivity and negativity, which correspond to expansion and collapse, respectively. So, the values of parameter [Formula: see text] for which expansion scalar is positive have been used to analyze the other physical variables including density, pressures and anisotropy. The same quantities have been evaluated for the values of [Formula: see text] that result in the negative values of expansion scalar leading to collapse. The effects of positive cosmological constant have been noted in both expansion and collapse solutions. Due to the presence of cosmological constant after collapse, there would occur inner and outer horizons or a unique horizon depending on the value of mass of the gravitating source.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
G. Abbas ◽  
M. Tahir

In this paper, we have studied gravitational collapse and expansion of nonstatic anisotropic fluid in 5D Einstein-Gauss-Bonnet gravity. For this purpose, the field equations have been modeled and evaluated for the given source and geometry. The two metric functions have been expressed in terms of parametric form of third metric function. We have examined the range of parameter β (appearing in the form of metric functions) for which Θ, the expansion scalar, becoming positive/negative leads to expansion/collapse of the source. The trapped surface condition has been explored by using definition of Misner-Sharp mass and auxiliary solutions. The auxiliary solutions of the field equations involve a single function that generates two types of anisotropic solutions. Each solution can be represented in term of arbitrary function of time; this function has been chosen arbitrarily to fit the different astrophysical time profiles. The existing solutions forecast gravitational expansion and collapse depending on the choice of initial data. In this case, wall to wall collapse of spherical source has been investigated. The dynamics of the spherical source have been observed graphically with the effects of Gauss-Bonnet coupling term α in the case of collapse and expansion. The energy conditions are satisfied for the specific values of parameters in both solutions; this implies that the solutions are physically acceptable.


Author(s):  
Anirudh Pradhan ◽  
Priyanka Garg ◽  
Archana Dixit

In the present paper, we have generalized the behaviors of {\color{blue}transit-decelerating to accelerating} FRW cosmological model in f (R, T) gravity theory, where R, T are Ricci scalar and trace of energy-momentum tensor respectively. The solution of the corresponding field equations is obtained by assuming a linear function of the Hubble parameter H, i.e., q = c<sub>1</sub> + c<sub>2</sub>H which gives a time-dependent DP (deceleration parameter) q(t)=-1+\frac{c_2}{\sqrt{2c_2 t +c_3}}, where c<sub>3</sub> and c<sub>2</sub> are arbitrary integrating constants [Tiwari et al., Eur. Phys. J. Plus: 131, 447 (2016); 132, 126 (2017)]. There are two scenarios in which we explain the particular form of scale factor thus obtained  (i) By using the recent constraints from OHD and JLA data which shows a cosmic deceleration to acceleration and (ii) By using new constraints from supernovae type la union data which shows accelerating expansion universe (q<0) throughout the evolution. We have observed that the EoS parameter, energy density parameters, and important cosmological planes yield the results compatible with the modern observational data. For the derived models, we have calculated various physical parameters as Luminosity distance, Distance modulus, and Apparent magnitude versus redshift for both supporting current observations.


2019 ◽  
Vol 97 (6) ◽  
pp. 678-691 ◽  
Author(s):  
Hang Xu ◽  
Ammarah Raees ◽  
Xiao-Hang Xu

In this paper, a fully-developed, immiscible nanofluid flow in a paralleled microchannel in the presence of a magnetic field is investigated. Buongiorno’s model is applied to describe the behaviors of the nanofluid flow. Different from most previous studies on microchannel flow, here the pressure term is considered as unknown, which makes the current model compatible with the commonly accepted channel flow models. The influences of various physical parameters on important physical quantities are given. The entropy generation analysis is performed. Variations of local and global entropy generations with the magnetic field parameter, the electric field, and the viscous dissipation parameter under various ratios of the thermophoresis parameter to the Brownian motion parameter are illustrated. The results indicate that the entropy generation rate strongly depends on the thermophoresis and the Brownian motion parameters. Their increase enhances the total irreversibility of entropy generation.


2015 ◽  
Vol 25 (3) ◽  
pp. 413-423 ◽  
Author(s):  
S.E. Omosigho ◽  
Dickson Omorogbe

Supplier selection is an important component of supply chain management in today?s global competitive environment. Hence, the evaluation and selection of suppliers have received considerable attention in the literature. Many attributes of suppliers, other than cost, are considered in the evaluation and selection process. Therefore, the process of evaluation and selection of suppliers is a multi-criteria decision making process. The methodology adopted to solve the supplier selection problem is intuitionistic fuzzy TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution). Generally, TOPSIS is based on the concept of minimum distance from the positive ideal solution and maximum distance from the negative ideal solution. We examine the deficiencies of using only one metric function in TOPSIS and propose the use of spherical metric function in addition to the commonly used metric functions. For empirical supplier selection problems, more than one metric function should be used.


2021 ◽  
Vol 36 (26) ◽  
pp. 2150190
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

A new compact stars nonsingular model is presented with the generalized Bardeen–Hayward mass function. Generalized Bardeen–Hayward described the regular black hole, however, due to its regularity or nonsingular nature we were inspired to construct an anisotropic compact stars model. Along with the ansatz mass function, we coupled it with a linear equation of state (EoS) to find the solutions of field equations. Indeed, the new solutions are physically viable in all physical ground. The energy conditions and Tolman–Oppenheimer–Volkoff (TOV)-equation are well satisfied signifying that the mass distribution is physically possible and at equilibrium. Also, the static stability criterion, the causality condition and Abreu’s stability condition hold good and therefore configurations are physically static stable. The same condition is further supported by the condition that the adiabatic index, which is greater than the Newtonian limit, i.e. [Formula: see text]. It is also noticed that the bag constant [Formula: see text] is proportional to the surface density in our model.


Author(s):  
Ksh. Newton Singh ◽  
Shyam Das ◽  
Piyali Bhar ◽  
Monsur Rahaman ◽  
Farook Rahaman

We present an exact solution that could describe compact star composed of color-flavor locked (CFL) phase. Einstein’s field equations were solved through CFL equation of state (EoS) along with a specific form of [Formula: see text] metric potential. Further, to explore a generalized solution we have also included pressure anisotropy. The solution is then analyzed by varying the color superconducting gap [Formula: see text] and its effects on the physical parameters. The stability of the solution through various criteria is also analyzed. To show the physical validity of the obtained solution we have generated the [Formula: see text] curve and fitted three well-known compact stars. This work shows that the anisotropy of the pressure at the interior increases with the color superconducting gap leading to decrease in adiabatic index closer to the critical limit. Further, the fluctuating range of mass due to the density perturbation is larger for lower color superconducting gap leading to more stable configuration.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050133
Author(s):  
Kangujam Priyokumar Singh ◽  
Mahbubur Rahman Mollah ◽  
Rajshekhar Roy Baruah ◽  
Meher Daimary

Here, we have investigated the interaction of Bianchi type-I anisotropic cloud string cosmological model universe with electromagnetic field in the context of general relativity. In this paper, the energy-momentum tensor is assumed to be the sum of the rest energy density and string tension density with an electromagnetic field. To obtain exact solution of Einstein’s field equations, we take the average scale factor as an integrating function of time. Also, the dynamics and significance of various physical parameters of model are discussed.


Author(s):  
T. Vinutha ◽  
V.U.M. Rao ◽  
Molla Mengesha

The present study deals with a spatially homogeneous locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model containing one dimensional cosmic string fluid source. The Einstein's field equations are solved by using a relation between the metric potentials and hybrid expansion law of average scale factor. We discuss accelerated expansion of our model through equation of state (ωde) and deceleration parameter (q). We observe that in the evolution of our model, the equation of state parameter starts from matter dominated phase ωde > -1/3 and ultimately attains a constant value in quintessence region (-1 < ωde < -1/3). The EoS parameter of the model never crosses the phantom divide line (ωde = 1). These facts are consistent with recent observations. We also discuss some other physical parameters.


Sign in / Sign up

Export Citation Format

Share Document