scholarly journals High-Fat Diet Alters Immunogenic Properties of Circulating and Adipose Tissue-Associated Myeloid-Derived CD45+DDR2+ Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sara J. Sidles ◽  
Ying Xiong ◽  
M. Rita I. Young ◽  
Amanda C. LaRue

Chronic inflammation is evident in the adipose tissue and periphery of patients with obesity, as well as mouse models of obesity. T cell subsets in obese adipose tissue are skewed towards Th1- and Th17-associated phenotypes and their secreted cytokines contribute to obesity-associated inflammation. Our lab recently identified a novel, myeloid-derived CD45+DDR2+ cell subset that modulates T cell activity. The current study sought to determine how these myeloid-derived CD45+DDR2+ cells are altered in the adipose tissue and peripheral blood of preobese mice and how this population modulates T cell activity. C57BL/6 mice were fed with a diet high in milkfat (60%·kcal, HFD) ad libitum until a 20% increase in total body weight was reached, and myeloid-derived CD45+DDR2+ cells and CD4+ T cells in visceral adipose tissue (VAT), mammary gland-associated adipose tissue (MGAT), and peripheral blood (PB) were phenotypically analyzed. Also analyzed was whether mediators from MGAT-primed myeloid-derived CD45+DDR2+ cells stimulate normal CD4+ T cell cytokine production. A higher percentage of myeloid-derived CD45+DDR2+ cells expressed the activation markers MHC II and CD80 in both VAT and MGAT of preobese mice. CD4+ T cells were preferentially skewed towards Th1- and Th17-associated phenotypes in the adipose tissue and periphery of preobese mice. In vitro, MGAT from HFD-fed mice triggered myeloid-derived CD45+DDR2+ cells to induce CD4+ T cell IFN-γ and TNF-α production. Taken together, this study shows that myeloid-derived CD45+DDR2+ cells express markers of immune activation and suggests that they play an immune modulatory role in the adipose tissue of preobese mice.

1983 ◽  
Vol 158 (2) ◽  
pp. 571-585 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
M C Mingari ◽  
J C Cerottini

In order to directly assess the distribution of cytolytic T lymphocytes (CTL) and their precursors (CTL-P) in the two major subsets of human T cells, we have used limiting dilution microculture systems to determine their frequencies. The two subsets were defined according to their reactivity (or lack thereof) with B9.4 monoclonal antibody (the specificity of which is similar, if not identical, to that of Leu 2b monoclonal antibody). Both B9+ and B9- cells obtained by sorting peripheral blood resting T cells using the fluorescence-activated cell sorter (FACS) were assayed for total CTL-P frequencies in a microculture system that allows clonal growth of every T cell. As assessed by a lectin-dependent assay, approximately 30% of peripheral blood T cells were CTP-P. In the B9+ subset (which represents 20-30% of all T cells), the CTL-P frequency was close to 100%, whereas the B9- subset had a 25-fold lower CTL-P frequency. It is thus evident that 90% and 10% of the total CTL-P in peripheral blood are confined to the B9+ or B9- T cell subsets, respectively. Analysis of the subset distribution of CTL-P directed against a given set of alloantigens confirmed these findings. CTL-P frequencies were also determined in B9+ and B9- subsets derived from T cells that had been activated in allogenic mixed leucocyte cultures (MLC). Approximately 10% of MLC T cells were CTL-P. This frequency was increased 3.5-fold in the B9+ subset, whereas the B9- subset contained only a small, although detectable number of CTL-P. Moreover, the great majority of the (operationally defined) CTL-P in MLC T cell population were found to be directed against the stimulating alloantigens, thus indicating a dramatic increase in specific CTL-P frequencies following in vitro stimulation in bulk cultures.


Blood ◽  
1979 ◽  
Vol 53 (6) ◽  
pp. 1066-1075 ◽  
Author(s):  
EL Reinherz ◽  
LM Nadler ◽  
DS Rosenthal ◽  
WC Moloney ◽  
SF Schlossman

Abstract Circulating peripheral blood tumor cells in four cases of chronic lymphoproliferative disease were immunologically characterized. By the use of T-cell-specific heteroantisera and indirect immunofluorescence, all were shown to involve proliferation of malignant T cells. Three cases demonstrated morphologic and clinical features consistent with chronic lymphocytic leukemia (CLL), and one case presented as a lymphosarcoma cell leukemia. Antisera specific for normal human T-cell subsets defined the malignant T cells in each case as arising from the TH2--subset. This subset normally constitutes approximately 80% of human peripheral blood T cells. Terminal deoxynucleotidyl transferase (TdT) was not detected in any of the T-cell CLL cases, thus supporting the notion that T-cell CLL represents a malignancy of a mature phenotype. The one patient with lymphosarcoma whose tumor cells were TdT-positive subsequently developed T-cell acute lymphoblastic leukemia (ALL). Moreover, la-like antigen (p23,30) was detected on two of these tumor cell populations. In addition, it was shown that not all tumor cells were E-rosette-positive, since only cells from 3 of 4 patients were capable of forming spontaneous rosettes. These findings demonstrate that heteroantisera can provide an additional important tool for dissecting the heterogeneity of T-cell leukemias and for relating them to more differentiated normal T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
An-Liang Guo ◽  
Jin-Fang Zhao ◽  
Lin Gao ◽  
Hui-Huang Huang ◽  
Ji-Yuan Zhang ◽  
...  

Exhaustion of HIV-1-specific CD8+ T cells prevents optimal control of HIV-1 infection. Identifying unconventional CD8+ T cell subsets to effectively control HIV-1 replication is vital. In this study, the role of CD11c+ CD8+ T cells during HIV-1 infection was evaluated. The frequencies of CD11c+ CD8+ T cells significantly increased and were negatively correlated with viral load in HIV-1-infected treatment-naïve patients. HIV-1-specific cells were enriched more in CD11c+ CD8+ T cells than in CD11c- CD8+ T cells, which could be induced by HIV-1-derived overlapping peptides, marking an HIV-1-specific CD8+ T cell population. This subset expressed higher levels of activating markers (CD38 and HLA-DR), cytotoxic markers (granzyme B, perforin, and CD107a), and cytokines (IL-2 and TNF-α), with lower levels of PD-1 compared to the CD11c- CD8+ T cell subset. In vitro analysis verified that CD11c+ CD8+ T cells displayed a stronger HIV-1-specific killing capacity than the CD11c- counterparts. These findings indicate that CD11c+ CD8+ T cells have potent immunotherapeutic efficacy in controlling HIV-1 infection.


Blood ◽  
1979 ◽  
Vol 53 (6) ◽  
pp. 1066-1075
Author(s):  
EL Reinherz ◽  
LM Nadler ◽  
DS Rosenthal ◽  
WC Moloney ◽  
SF Schlossman

Circulating peripheral blood tumor cells in four cases of chronic lymphoproliferative disease were immunologically characterized. By the use of T-cell-specific heteroantisera and indirect immunofluorescence, all were shown to involve proliferation of malignant T cells. Three cases demonstrated morphologic and clinical features consistent with chronic lymphocytic leukemia (CLL), and one case presented as a lymphosarcoma cell leukemia. Antisera specific for normal human T-cell subsets defined the malignant T cells in each case as arising from the TH2--subset. This subset normally constitutes approximately 80% of human peripheral blood T cells. Terminal deoxynucleotidyl transferase (TdT) was not detected in any of the T-cell CLL cases, thus supporting the notion that T-cell CLL represents a malignancy of a mature phenotype. The one patient with lymphosarcoma whose tumor cells were TdT-positive subsequently developed T-cell acute lymphoblastic leukemia (ALL). Moreover, la-like antigen (p23,30) was detected on two of these tumor cell populations. In addition, it was shown that not all tumor cells were E-rosette-positive, since only cells from 3 of 4 patients were capable of forming spontaneous rosettes. These findings demonstrate that heteroantisera can provide an additional important tool for dissecting the heterogeneity of T-cell leukemias and for relating them to more differentiated normal T cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3272-3272 ◽  
Author(s):  
Josée Golay ◽  
Anna D’amico ◽  
Gianmaria Borleri ◽  
Maria Chiara Finazzi ◽  
Giulia Quaresmini ◽  
...  

Abstract Background The combined use of chemotherapy and monoclonal antibodies has proved highly effective for the treatment of CLL but often results in severe life threatening immunosuppression. The development of adoptive therapy with autologous T cells could be clinically relevant to overcome these problems. Methods We have devised a novel, simple and efficient method for ex vivo expansion of normal autologous T cells from the peripheral blood of CLL patients for adoptive therapy, using blinatumomab (CD3xCD19) and rhIL-2 in serum-free medium. The complete phenotype of in vitro expanded T cells was analyzed by flow cytometry and their cytotoxic activity by calcein release assays. Results We performed 18 expansions of T cells, starting from a very small volume of peripheral blood from untreated CLL patients (mean 10.3 ml, range 2-30 ml) that contained a mean of 9.2x106 T cells (range 0.4 to 51x106)(Fig.1). This method allowed reproducible expansion in about 21 days of a mean 410x106 CD3+ T cells (range 71 to 2184x106). The mean fold expansion of T cells in about 3 weeks of in vitro culture was 224 (range 4.4-1326). The only significant contaminant in final Blinatumomab Expanded T cell cultures (BET) were NK cells (mean 18.5%). Indeed addition of blinatumomab and rhIL-2 to the cultures led to a rapid decrease in CLL B cells, which took place from days 7 to 14 onwards and resulted in their complete depletion within 3 weeks (mean 0.2% CLL B cells at days 18-25). Only in one case, a significant percentage of CLL B cells could be observed at the end of culture, but this was due to the particularly high percentage neoplastic cells in the starting population in this patient (98%), resulting in relatively late depletion of these cells, which took place between days 14 and 21, and therefore remained detectable in this case at day 24 (3.8% CLL B cells at day 24). Despite the very low percentage of starting T cells in this specific patient (1.2%), 152x106 T cells could be obtained, equivalent to a 42 fold expansion. In the 18 expansions performed, the resulting BET cells contained both CD4+ and CD8+ cells in varying proportions (median 46.2% and 44.4% respectively). Only in two cases the final product was composed predominantly of CD4+ cells (95%). Expanded T cells were polyclonal, as shown by TCR Vβ expression which was within the normal range by flow cytometry. Indeed CMV specific clones, detected by CMV peptide (pp65495-503)-loaded HLA-A*0201 tetramer, were expanded using this method and detected in equivalent proportion before and after expansion. Final T cells were composed predominantly of the effector and central memory subsets. Th1 were slightly prevalent over Th2 cells (means 20% and 10%, respectively), whereas Th17 and Treg were less than 1%. Since CLL derived T cells have been shown previously to have enhanced expression of the synapse regulators CD272 and CD279 compared to normal T cells, leading to impaired immunological synapse formation, we have analyzed these markers in both starting and BET cells from 4 patients. We observed that CD272 and CD279 diminished in BET compared to the starting CLL T populations (from 73% to 19% and 61% to 18%, respectively). These data suggest that stimulation and expansion with blinatumomab and rhIL-2 has normalized expression of these regulators on CLL T cells. Indeed BET were highly cytotoxic against CD19+ targets cell lines or primary CLL cells, with 70-90% lysis at a 3:1 effector target ratio in presence of blinatumomab. Finally BET were compared to Xcellerated cells expanded using anti-CD3/CD28 Dynabeads and rhIL-2. The expansion protocols using either blinatumomab or anti-CD3/CD28 Dynabeads showed equivalent efficiency and comparable cell composition at the end of culture. Further comparison of the T cell subsets present in BET or CD3/CD28 cultures is in progress. Conclusions These data altogether suggest that the use of blinatumomab and rhIL-2 provides a reproducible, simple and GMP-compliant protocol, allowing expansion of large numbers of autologous polyclonal T cells depleted of CLL cells, from relatively small volumes of peripheral blood from CLL patients. This approach is an attractive option for adoptive therapy in these patients after immunosuppressive treatments. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 229-229 ◽  
Author(s):  
Tomomi Toubai ◽  
Corinne Rossi ◽  
Katherine Oravecz-Wilson ◽  
Nathan Mathewson ◽  
Cynthia Zajac ◽  
...  

Abstract Innate immune receptors like pattern recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) like-receptors (NLR) on immune cells play an important role in initiating inflammatory responses to damage- and pathogen- associated molecular patterns (DAMPs and PAMPs) expressed on invading pathogens or released from damaged cells. Although it is well known that DAMPs directly modulate innate immune functions, it is less clear whether DAMPs directly regulate T cell intrinsic function. Members of the sialic acid binding Ig-like lectin (Siglec) family have immunoreceptor tyrosine-based inhibitory motifs (ITIM) or ITIM-like regions in their intracellular domain that negatively regulate immune activation induced by DAMPs. Our previous data suggested that the Siglec- G-CD24 interaction in host APCs plays an important role in the negative regulation of graft-versus host (GVH) responses. However, the T cell autonomous role of Siglec-G in the regulation of T cell responses is not known. Because Siglecs are important negative regulators of immune responses, we tested the hypothesis that the deficiency of Siglec-G in donor T cells would enhance GVHD. To test our hypothesis, we first examined detailed phenotypic analysis of various T cell subsets and activation markers in naïve Siglec-G-/- and wild-type (WT) B6 animals and found similar distribution of naïve, memory, effector and regulatory T cells. In order to examine whether the absence of Siglec-G in donors affects GVHD, WT-BALB/cmice were lethally irradiated (850cGy) and transplanted on day 0 with 5x106 bone marrow and 0.5x106 splenic CD90+ T cells from either syngeneic WT-BALB/c, allogeneic MHC-mismatched WT-B6 or Siglec-G-/- animals. The recipients receiving donor T cells from Siglec-G-/- animals showed a significantly worse survival compared to allogeneic WT-B6 animals (p<0.05). This increased mortality was also associated with more severe GVHD damage in target organs and a higher expansion of activated CD69+, IFN-r+, and IL-17A+ donor T cells in the spleen and target organs. Enhanced GVHD mortality and severity was also observed in MHC mismatched haploidentical matched B6 in to F1models (p<0.05). To explore the mechanism, we tested whether Siglec-G deficiency alters the naïve T cell responses in vitro after allogeneic or non-specific TCR stimulation in the absence of exogenous DAMPs. Interestingly Siglec-G-/- T cells showed similar proliferation in vitro, when compared to WT B6 T cells. In addition, Siglec-G-/- Tregs are equally suppressive in suppression assay and Siglec-G-/- T cells showed severe GVHD even Tregs are depleted in allo-BMT. However, Siglec-G-/- T cells showed a higher proliferation after direct TCR stimulation (CD3/CD28) with addition of DAMP (HMGB-1) when compared to WT T cells in vitro, suggesting direct T cell intrinsic effects. Consistent with this result, allogeneic Siglec-G-/- T cells caused similar mortality compared to WT controls in non-irradiated B6 into F1 model due to the absence of DAMPs from conditioning. To test the critical cellular mechanisms, we examined the function of endogenous Siglec-G ligand, CD24. We utilized BALB/c CD24-/- animals as hosts in same BMT model and found that CD24-/- animals showed an enhanced GVHD mortality and severity when compared to WT animals (p<0.05). To enhance Siglec-G-CD24 axis, we utilized a novel CD24 fusion protein (CD24Fc) in same BMT model and found that CD24 Fc ameliorated GVHD severity and mortality in not only allogeneic WT-B6 animals (p<0.05) but also CD24-/- animals (p<0.05). Next we explored DAMPs regulation by Siglec-G-CD24 axis in GVL. We utilized the same model of CD24Fc treatment but added P815 at the same time of allo-BMT and found that CD24Fc treated animals showed equivalent GVL to non-treated animals, suggesting that regulation of DAMPs with CD24Fc mitigates GVHD with maintaining GVL effect. Collectively our data suggested that the expression of both Siglec-G on donor T cells and CD24 on hosts is critical for controlling GVHD in the context of DAMPs released from conditioning, and represents a novel strategy that CD24Fc can mitigates GVHD with maintaining GVL. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingde Li ◽  
Danlin Yao ◽  
Xiangbo Zeng ◽  
Dimitri Kasakovski ◽  
Yikai Zhang ◽  
...  

Abstract T cells are fundamental effector cells against viruses and cancers that can be divided into different subsets based on their long-term immune protection and immediate immune response effects. The percentage and absolute number of these subsets change with ageing, which leads to a reduced immune response in older individuals. Stem cell memory T cells (TSCM) represent a small population of memory T cells with enhanced proliferation and differentiation properties that are endowed with high potential for maintaining T cell homeostasis. However, whether these cells change with ageing and gender remains unknown. Here, we assayed the distribution of TSCM and other T cell subsets in peripheral blood from 92 healthy subjects (44 females and 48 males) ranging from 3 to 88 years old by flow cytometry. We found that CD4+ and CD8+ TSCM in the circulation have relatively stable frequencies, and the absolute number of CD8+ TSCM decreased with age; however, the ratio of TSCM to the CD4+ or CD8+ naïve population increased with age. Unlike the obvious changes in other T cell subsets with age and gender, the stable level of TSCM in peripheral blood may support their capacity for sustaining long-term immunological memory, while their importance may increase together with ageing.


2020 ◽  
Author(s):  
Janine Trombke ◽  
Lucie Loyal ◽  
Braun Julian ◽  
Pleyer Uwe ◽  
Thiel Andreas ◽  
...  

Abstract Purpose: Birdshot Retinochoroiditis (BSRC) is a progressive non-infectious intraocular inflammation that affects choroid and retina. Inflammatory processes have adverse effects on vision by affecting photoreceptor-bearing cells that do not regenerate. Methods: This study aimed at characterizing inflammatory CD4+ and CD8+ T cell subsets in the peripheral blood of BSRCs. Furthermore, we correlated phenotypical and functional immunological analyses with clinical data. Results: We observed a slight increase of terminally differentiated effector memory CD8+ T cells expressing CD45RA (TEMRA) in blood of inactive, compared to active BSRCs. Moreover, we identified a trend for a decreased population of TH2 cells and increased TH1 frequencies in active BSRCs, a typical sign of ongoing autoimmune processes. Functional assays demonstrated severe and overall impairment of effector function of both, CD4+ and CD8+ inflammatory T cells, which might reflect T cell exhaustion. Conclusion: Although the eye is the main site of inflammation in BSRC, we observed altered T cell subset compositions in the peripheral blood, dependent on the disease status. Our results indicate that T cells may play a major role in BSRC pathology, although our cohort size is too limited for definitve conclusions. Future studies with larger and well-defined cohorts of BSRCs have to be performed.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1885-1885
Author(s):  
Antonio Pierini ◽  
Caitlin Moffett ◽  
Dominik Schneidawind ◽  
Jeanette Baker ◽  
Hidekazu Nishikii ◽  
...  

Abstract CD4+ CD25+ FoxP3+ regulatory T cells (Treg) have been shown to effectively prevent graft versus host disease (GvHD) when adoptively transferred in murine models of hematopoietic cell transplantation (HCT) and phase I/II clinical trials. Critical limitations to the clinical application of Treg are the paucity of cells and limited knowledge of the mechanism(s) of in vivo function. In physiologic conditions Treg regulate immune responses during inflammation. We hypothesized that inflammatory conditions in GvHD modify Treg characteristics and function. To test this hypothesis, we primed Treg with irradiated (3000 cGy) peripheral blood from acute GvHD (aGvHD) affected mice for 20-24 hours and then transferred these cells in a mouse model of GvHD where allogeneic T cell depleted bone marrow (TCD BM) from C57BL/6 mice was transplanted into lethally irradiated (8 Gy) BALB/c recipients together with 7.5x105 to 1x106 /animal donor derived conventional CD4+ and CD8+ T cells (Tcon). C57BL/6 Treg primed with irradiated aGvHD peripheral blood were injected at day 0 after HCT for preventing GvHD or at day +7 or +8 as GvHD treatment. Their adoptive transfer resulted in improved survival in comparison to unprimed natural occurring Treg when used for both GvHD prevention (p=0.01) and treatment (p=0.04). Moreover treatment with irradiated aGvHD peripheral blood-primed Treg did not impact graft versus tumor effects in a mouse model of T cell mediated tumor killing. BLI demonstrated that injected allogeneic Tcon completely cleared previously infused luc+ A20 tumor cells even in the presence of primed Treg (primed Treg + Tcon + A20 vs A20 alone p<0.001). Irradiated aGvHD peripheral blood-primed Treg express increased levels of activation markers with suppressive function such as CTLA4 (p<0.001) and LAG3 (p<0.05) in comparison to unprimed Treg in vitro. We also found that Treg primed with irradiated cells of aGvHD affected animals after removing the serum did not enhance the expression of the same markers (p>0.05) demonstrating that serum from aGvHD animals is required for Treg priming and function. We further tested the ability of several inflammatory cytokines that are normally secreted during GvHD such as IFN-γ, IL-6, IL-12 and TNFα to induce similar in vitro Treg activation. We found that TNFɑ selectively activated Treg without impacting CD4+ FoxP3- T cells. TNFɑ-primed Treg have increased expression of activation markers such as CD69 (p<0.0001), CD25 (p<0.0001), and LAG3 (p=0.0002), produce a greater amount of suppressive cytokines such as IL-10 (p=0.03) and TGF-β (p=0.02), and enhance the expression of homing markers such as CD62L (p=0.005) that are required for in vivo function. TNFɑ-primed Treg had increased ability to proliferate (p=0.02) and, at the same time, to suppress Tcon proliferation (p=0.04) in a mixed lymphocyte reaction against irradiated allogeneic splenocytes, while, on the contrary, TNFɑ-primed Tcon had reduced ability to proliferate in similar conditions in comparison to unprimed Tcon (p=0.0004). To test the effect of TNFɑ priming on in vivo Tcon proliferation we injected TNFɑ-primed and unprimed luc+ Tcon in allogeneic BALB/c Rag2-/- γ-chain-/- immune deficient animals that were sublethally irradiated (400 cGy). BLI at day +7 after Tcon injection revealed reduced TNFɑ-primed Tcon in vivo proliferation (p=0.01) that resulted in milder GvHD symptoms (p=0.02). Finally, in a GvHD prevention mouse model TNFɑ-primed Treg infused at 1:10 Treg/Tcon ratio resulted in improved animal survival as compared to unprimed Treg (p=0.02), demonstrating enhanced efficacy of TNFɑ priming in the in vivo function of Treg. In summary, our study demonstrates that Treg respond to TNFɑ acquiring an activated status resulting in increased function. As TNFɑ is produced by several immune cells during inflammation, our work elucidates aspects of the physiologic mechanisms of Treg function. Furthermore TNFɑ priming of Treg in vitro provides a new tool to optimize Treg cellular therapies also allowing for the use of a reduced cell number for GvHD prevention and treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3297-3306 ◽  
Author(s):  
P Moss ◽  
G Gillespie ◽  
P Frodsham ◽  
J Bell ◽  
H Reyburn

Patients with paraproteinemia have abnormalities in their T-cell subsets including inversion of the CD4:CD8 ratio and increased expression of activation markers. Recently, distortions in T-cell receptor (TCR) TCRAV and TCRBV gene segment expression have been reported, although the significance of these observations is unclear given the finding of clonal populations of CD8+ T cells in healthy elderly individuals. We have used an extensive range of TCR V-region- specific monoclonal antibodies to assess TCRAV and TCRBV expression in patients with myeloma and paraproteinemia. TCR sequence analysis was used to assess the clonality of expansions and 3-color fluorescence- activated cell sorting analysis determined the phenotype of the expanded populations. The patients show novel oligoclonal expansions within the CD4+ subset and show an increased frequency of CD8+ expansions. Oligoclonal CD4+ T cells belong to the rare CD4+CD28- T- cell subset, a phenotype associated with granular morphology. CD45RA and CD11b are expressed on many of the CD8 T-cell expansions. Comparison of T-cell receptor sequences from two T-cell clones in one patient suggests a possible role for a common peptide antigen in the generation of the expansions. Further work is needed to identify the relevance of such T cells to the B-cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document