scholarly journals Antimalarial Activity and Toxicological Assessment of Betula alnoides Extract against Plasmodium berghei Infections in Mice

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Prapaporn Chaniad ◽  
Tachpon Techarang ◽  
Arisara Phuwajaroanpong ◽  
Chuchard Punsawad

The resistance of malaria parasites to the current antimalarial drugs has led to the search for novel effective drugs. Betula alnoides has been traditionally used for the treatment of malaria, but the scientific evidence to substantiate this claim is still lacking. Therefore, the present study aimed at evaluating the antimalarial activity and toxicity of an aqueous stem extract of B. alnoides in a mouse model. The in vivo antimalarial activity of an aqueous stem extract of B. alnoides was determined by a 4-day suppressive test in mice infected with chloroquine-sensitive Plasmodium berghei ANKA. The B. alnoides extract was administered orally at different doses of 200, 400, and 600 mg/kg body weight. The levels of parasitaemia, survival time, body weight change, and food and water consumption of the mice were determined. The acute toxicity of the extract was assessed in the mice for 14 days after the administration of a single oral dose of 5000 mg/kg. An aqueous stem extract of B. alnoides exhibited a significant dose-dependent reduction of parasitaemia in P. berghei-infected mice at all dose levels compared to the reduction in the negative control. Extract doses of 200, 400, and 600 mg/kg body weight suppressed the levels of parasitaemia by 46.90, 58.39, and 71.26%, respectively. The extract also significantly prolonged the survival times of the P. berghei-infected mice compared to the survival times of the negative control mice. In addition, at all dose levels, the extract prevented body weight loss in P. berghei-infected mice. For the acute toxicity, there were no significant alterations in the biochemical parameters and in the histopathology. In conclusion, the aqueous stem extract of B. alnoides possesses antimalarial properties. A single oral dose of 5000 mg/kg body weight had no significant toxic effects on the function and structure of the kidneys and liver. These results support its use in traditional medicine for the treatment of malaria.

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Uchechi E. Enenebeaku ◽  
Nnamdi C. Ukwandu ◽  
Ifeyinwa C. Mgbemena ◽  
Harriet C. Nwigwe ◽  
Conrad K. Enenebeaku ◽  
...  

Abstract Background Malaria is one of the tropical diseases of universal concern particularly with continuous appearance of resistant strains of P.falciparum. This calls for continous screening of traditional plants such that new and effective antimalarial agents will be developed. This study therefore explored the oral acute toxicity and antimalarial potentials of aqueous and methanolic extracts of roots, leaves and stem of Dictyandra arborescens on Plasmodium berghei infected mice. Results No mortality was recorded in any of the experimental animal groups even at the highest tested dose (5000 mg/kg b.wt) of the extract after monitoring them for 4hrs and subsequently for 7 days. Out of the six extracts, methanolic extracts of the roots and leaves exhibited more antimalarial activity than others. A significant difference (P < 0.05) was statistically observed in the parasite count of groups that received methanol extracts of roots and leaves of D. arborescens. This observation was made when these two extracts were compared with other groups as well as the negative control. However, activity of the standard antimalarial drug (artesunate) was higher (p˂0.05) than those of the extracts. Phytochemicals such as tannins, alkaloids, saponins, terpenoids, flavonoids etc. were present in the extracts in varying quantities. GC–MS analysis of methanol extract of the root of this plant showed different chemical compounds. Conclusion Administration of aqueous and methanol extracts of roots, leaves and stem of D. arborescens in mice is not harmful at any dose less than or equal to 5000 mg/kg. Methanol extracts exhibited more antimalarial activity than aqueous extracts suggesting that antimalarial activity of the plant parts could be affected by the solvent used for extraction and antimalarial activity may be more in a particular part of a plant. The presence of different bioactive compounds identified in phytochemical and GC–MS analysis could be the fundamental scientific evidence for the antimalarial activity exhibited by this plant especially in the root.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Getu Habte ◽  
Teshome Nedi ◽  
Solomon Assefa

Background. Malaria is among the leading causes of mortality and morbidity. Moreover, the emergence of resistance to antimalarial drugs is a major problem in controlling the disease. This makes the development of novel antimalarial drugs a necessity. Medicinal plants are important sources in discovering antimalarial drugs. Schinus molle is claimed for its antimalarial effect in Ethiopian folkloric medicine and endowed with in vitro antiplasmodial activity. In the present study, the in vivo antimalarial activity of the plant was investigated. Methods. Acute toxicity was carried out using a standard procedure. To screen the in vivo antimalarial potential of the S. molle against Plasmodium berghei (ANKA), a 4-day suppressive test was employed. The extracts and fractions were given to infected mice by oral gavage at 100, 200, and 400 mg/kg/day for four consecutive days. Parameters such as parasitemia were then evaluated. Results. Any sign of toxicity was not observed in the oral acute toxicity test. The crude extracts and solvent fractions exerted a significant (p<0.05) inhibition of parasite load compared to the negative control. The highest inhibition (66.91%) was exhibited by the 400 mg/kg/day dose of 80% methanolic crude extract. Among the fractions, chloroform fraction demonstrated maximal chemosuppressive effect (55.60%). Moreover, crude extracts and solvent fractions prevented body weight loss, reduction in temperature, and anemia compared to the negative control. Except the aqueous fraction, the tested plant extracts were able to significantly prolong the survival time of infected mice. Conclusion. The findings of the present study confirmed the safety and a promising in vivo antimalarial activity of S. molle, thus supporting the traditional claim and in vitro efficacy. In-depth investigations on the plant, however, are highly recommended.


Author(s):  
E. O. Dada ◽  
R. O. Adebayo

The study assessed the antiplasmodial activity of the ethanolic leaf extract of Cymbopogon citratus on chloroquine sensitive Plasmodium berghei in mice. Standard methods were used to determine the bioactive components of the leaf extract, acute toxicity test and antiplasmodial activity.  Mice obtained (of body weight 20-25 g) were housed and acclimatized for seven days at room temperature before the commencement of the experiment. A total of 16 albino mice were randomized into four groups of four mice each for acute toxicity while 35 were grouped into five groups of seven mice each for antiplasmodial activity. All the groups 1-5 were infected with P. berghei and were treated for six consecutive days with leaf extract dosage of 200, 400 and        800 mg/kg, standard antimalarial drug (chloroquine) as positive control and normal saline as negative control respectively. Phytochemical screening/ bioactive compounds of the leaf extract reveals the presence of saponins (10.3 mg/g), tannins (2.38 mg/g), flavonoids (1.87 mg/g), terpenoids (19.12 mg/g), steroids (6.21 mg/g) and glycosides (19.9 mg/g) as secondary metabolites. The leaf extract revealed decrease in body weight of the infected mice and did not show any toxicity at all dosage levels used. The antiplasmodial investigation revealed a decrease in percentage parasitaemia level in mice of extract treated groups compared with mice infected and not treated. The parasitaemia reduction was higher in 800 mg/kg than 200 mg/kg and 400 mg/kg. This significant decrease (P<0.05) in percentage parasitaemia level in the study was dose and time-dependent. The extract showed significant (p<0.05) antiplasmodial activity and could serve as possible candidates for the development of new effective drugs for the treatment of malaria.


Author(s):  
Kartika Arum Wardani ◽  
Kholida Nur Aini ◽  
Heny Arwati ◽  
Willy Sandhika

Abstract Sequestration of Plasmodium berghei ANKA-infected erythrocytes occurs in BALB/c mice as characteristic of  Plasmodium falciparum infection in humans. Animals’ bile has been widely used for centuries in Traditional Chinese Medicine. Goat bile has been used in healing infectious and non-infectious diseases; however, no report on the use of goat bile against malaria infection and sequestration. The purpose of this study was to analyze the correlation between parasitemia and sequestration in the liver of P.berghei ANKA-infected BALB/c mice treated with goat bile. This research was an in vivo experimental study using the post-test control group design. The male BALB/c mice aged ± 6 weeks, body weight 20-25 g were used. The mice were divided into five groups where Group 1-3 were mice treated with goat bile 25%, 50%, and 100%, respectively. Group 4-5 were negative (sterile water) and positive controls (DHP). Parasitemia was observed daily from each mouse and the number of sequestered infected erythrocytes on the endothelium of sinusoids. The data were analyzed using t independent test. Antimalarial activity of goat bile was shown by the lower parasitemia in goat bile-treated mice compared with the negative control. The average number of sequestration was goat bile concentration-dependent manner. The higher the concentration, the lower the number of sequestration. Sequestration was correlated with parasitemia (p=0,0001). Sequestration of P.berghei ANKA-infected erythrocytes correlated with parasitemia, and was goat bile concentration-dependent manner. Keywords: Malaria, parasitemia, sequestration, goat bileCorrespondence: [email protected]


Author(s):  
E. N. Ekene ◽  
O. M. Odigie

Through bite from a female Anopheles mosquito, Malaria is transmitted by infection with single-celled parasites of the genus Plasmodium. Studies have shown it to be characterized by periodic bouts of severe chills, accompanied with high fever. It has been suggested that Pennisetum purpureum possess antiplasmodial effects, however, no scientific record(s) yet exist(s) to validate this claim. This study was therefore undertaken to determine the anti-malaria and haematological properties of ethanol leaf extract of P. purpureum in Plasmodium berghei -infected mice. Thirty-Five (35) albino mice (20g) were procured, acclimatized (for two weeks) and assigned to five groups of 7 mice each. With group I receiving standard rat feed ad-libitum (control), Groups II through V were respectively infected with Plasmodium berghei (malaria infected, untreated), Plasmodium berghei infected + treated with 5mg/kg body weight of Artesunate (malaria infected, Artesunate treated), infected with Plasmodium berghei + treated with 200mg/kg body weight of Pennisetum  purpureum (malaria infected, low dose extract treated), and infected with Plasmodium berghei + treated with 400mg/kg body weight of Pennisetum  purpureum (malaria infected, high dose extract treated). After 21 days of administration, mice were sacrificed, blood samples collected, centrifuged for 10 minutes at 300g, and resulting supernatant biochemically analysed for hematologic changes. Result showed a significant increase in initial parasite count across groups except control. Administration of Artesunate also caused a significant (p < .05) reduction in parasite counts upon comparison with control. More so, administration of low and high dose extract caused a significant (p < .05) reduction in parasite count following comparison with control. Administration of 200mg/kg caused the highest parasitemia suppression than high dose. We recommend for further evaluation of the plant in other to identify active ingredients responsible for the observed antimalarial activity.


Author(s):  
NURINDAH SALOKA TRISNANINGRUM ◽  
HENDRI ASTUTY

Objective: This study aimed to ascertain the effectiveness of combination treatment with propolis and artemisinin-based combination therapy (ACT)in avoiding further resistance to ACT.Methods: A total of 35 mice were injected with Plasmodium berghei and divided into six equal groups: No treatment (negative control), ACT alone(positive control), 75-mg propolis/kg body weight (BW), 150-mg propolis/kg BW, ACT with 75-mg propolis/kg BW, and ACT with 150-mg propolis/kg BW. After 7 days of therapy, parasite density was calculated using a thin blood smear.Results: Parasite density significantly declined after combination treatment with ACT and 150-mg propolis/kg BW.Conclusion: Therapy with propolis alone showed no inhibitory effect on parasites, although its 150-mg/kg-BW dose was effective as an ACT adjuvantmalaria therapy in mice.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Dawit Zewdu Wondafrash ◽  
Dayananda Bhoumik ◽  
Birhanetensay Masresha Altaye ◽  
Helen Bitew Tareke ◽  
Brhane Teklebrhan Assefa

Background. Malaria remains a major worldwide public health problem leading to death of millions of people. Spread and emergence of antimalarial drug resistance are the major challenge in malaria control. Medicinal plants are the key source of new effective antimalarial agents. Cordia africana (Lam.) is widely used for traditional management of malaria by local people in different parts of Ethiopia. The present study aimed to evaluate in vivo antimalarial effects of leaf extracts and solvent fractions of Cordia africana on Plasmodium berghei-infected mice. Methods. The leaf extracts were prepared and tested for oral acute toxicity according to the OECD guideline. In vivo antimalarial effects of various doses of C. africana extracts and solvent fractions were determined using the four-day suppression test (both crude and fractions), as well as curative and chemoprophylactic tests (crude extracts). Results. The acute toxicity test of the plant extract revealed that the medium lethal dose is higher than 2000 mg/kg. The crude extract of the plant exhibited significant parasitemia suppression in the four-day suppression (51.19%), curative (57.14%), and prophylactic (46.48%) tests at 600 mg/kg. The n-butanol fraction exhibited the highest chemosuppression (55.62%) at 400 mg/kg, followed by the chloroform fraction (45.04%) at the same dose. Conclusion. Our findings indicated that both the crude leaf extracts and fractions of C. africana possess antimalarial effects, supporting the traditional claim of the plant.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Agumas Alemu Alehegn ◽  
Jibril Seid Yesuf ◽  
Eshetie Melese Birru

Background. Treatment of malaria has been compromised by the emergence of drug-resistant parasites. Consequently, novel agents are urgently needed from different sources including from medicinal plants. Thus, the current study aimed at evaluating the antimalarial activity of crude extract and solvent fractions of the leaves of Bersama abyssinica (B. abyssinica) against Plasmodium berghei infection in Swiss Albino mice. Method. A 4-day suppressive test was employed to evaluate the antimalarial effect of crude extract and solvent fractions against early infection. The curative and prophylactic effects of crude extract and fraction with the highest chemosuppression were further tested by Rane’s test and residual infection procedure. Parasitemia, survival time, packed cell volume (PCV), body weight, and rectal temperature of mice were used as evaluation parameters. Windows SPSS version 20 was used to analyze the data and analysis of variance (ANOVA) followed by Tukey’s post hoc test was used to compare data between groups. Results. The crude extract and aqueous fraction significantly (P<0.05 to 0.001) suppressed parasitemia followed by protection of PCV reduction resulting in prolonging the survival time but failed to protect body weight and rectal temperature reduction in all tested models. The ethyl acetate and chloroform fractions also showed significant chemosuppression and PCV protection in the 4-day suppressive test. The crude extract exhibited a chemosuppression of 49.51%, 57.94%, and 44.11% while the aqueous fraction showed suppression of 47.69%, 51.62%, and 37.07% in 4-day suppressive, curative, and prophylactic tests, respectively, at 400 mg/kg. Conclusion. The crude extract and fractions showed fairly moderate antimalarial activity, and the finding supports the traditional claims and previous in vitro studies. Thus, this may call for further studies to isolate chemical entities for additional safety and efficacy tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Tewolde Teklu ◽  
Ephrem Engidawork ◽  
Teshome Nedi ◽  
Tilahun Teklehaymanot ◽  
Leake Gebremeskel

Malaria’s global impact, fueled by resistance to several antimalarial drugs, has necessitated a quest to new antimalarial drugs from several sources with traditional medicinal plants being one of them. This study was conducted to assess the antimalarial activity of a traditionally used medicinal plant, Leonotis ocymifolia, against Plasmodium berghei. The plant has been extracted using maceration technique, and doses ranging from 100–800 mg/kg of Leonotis ocymifolia were used to test its antimalarial activity. Tween 80 (2% in water) and chloroquine 25 mg/kg were used as negative and positive controls, respectively. The antimalarial activities of the plant were determined by measuring parasitemia, survival time, packed cell volume, temperature, and weight. The plant’s hydroalcoholic extract, as compared to negative control, maximally decreased parasite load by 41.4% at 800 mg/kg (p < 0.001). This parasite suppression was followed by longer survival time in the groups taking 400 mg/kg (p < 0.05) and 800 mg/kg (p < 0.05) in a four-day suppressive test and in those taking 800 mg/kg (p < 0.05) in Rane’s test. The plant did not prevent weight and PCV reduction but prevented temperature reduction at 400 mg/kg (p < 0.05) and 800 mg/kg (p < 0.05) in a four-day suppressive model, and at 800 mg/kg (p < 0.05) in Rane’s model. The average but consistent antimalarial activity of the plant across the test models corroborates the folkloric antimalarial use of the plant. The study recommends further pharmacological screenings, isolation, and identification of active compound(s) of the plant Leonotis ocymifolia.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988532 ◽  
Author(s):  
Dagninet Derebe ◽  
Muluken Wubetu

Failure of the efficacy of antimalarial drugs is recognized in different classes of medicines for treating malaria, which urges the need for new drugs. This study tried to check the in vivo antimalarial activity of the root extracts of Acanthus polystachyus Delile against Plasmodium berghei–infected mice. The study revealed that the methanolic crude extract of the root of Acanthus polystachyus Delile showed significant ( P < .01) parasitemia suppressive activities in both models compared with the negative control. Parasitemia suppressive activities were 25.26%, 33.46%, and 51.48% in a 4-day suppressive test and 23.31%, 31.20%, and 43.54% in prophylaxis test at 100, 200, and 400 mg/kg of the extract, respectively, as compared to the negative control. Besides, the extract increases mean survival time significantly in all tested doses in a 4-day suppressive test, but in the prophylaxis model, only mice treated with 200 and 400 mg/kg significantly lived longer. Based on this finding, the root of Acanthus polystachyus Delile has strong antimalarial activity, which may be a good candidate for new antimalarial agents.


Sign in / Sign up

Export Citation Format

Share Document