scholarly journals Reinforcement of PMMA Denture Base Material with a Mixture of ZrO2Nanoparticles and Glass Fibers

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammed M. Gad ◽  
Ahmad M. Al-Thobity ◽  
Ahmed Rahoma ◽  
Reem Abualsaud ◽  
Fahad A. Al-Harbi ◽  
...  

This study is aimed at evaluating the hybrid reinforcement effects of zirconium oxide nanoparticles (nano-ZrO2) and glass fibers (GFs) at different ratios on the flexural and impact strengths of a polymethylmethacrylate (PMMA) denture base. A total of 160 specimens were fabricated from heat-polymerized acrylic resins using the water bath technique. For the control group, the specimens did not receive any additions; for the test group, different concentrations of nano-ZrO2/GFs at 5% of the PMMA polymer were added. The concentrations of nano-ZrO2/GFs were as follows: 5%–0%, 4%–1%, 3%–2%, 2.5%–2.5%, 2%–3%, 1%–4%, and 0%–5%. The flexural strength was measured using the three-point bending test. The impact strength was measured using the Charpy impact test. Results were tabulated and analyzed using one-way analysis of variance (ANOVA) and the Tukey–Kramer multiple comparison test (p≤0.05). The flexural and impact strengths of PMMA-nano-ZrO2 + GF composites were significantly improved when compared with those of pure PMMA (p<0.05). The maximum flexural strength (94.05 ± 6.95 MPa) and impact strength (3.89 ± 0.46 kJ/m2) were obtained with PMMA (2.5%)/nano-ZrO2 + 2.5% GF mixtures and could be used for removable prosthesis fabrication.

2009 ◽  
Vol 20 (2) ◽  
pp. 132-137 ◽  
Author(s):  
Rafael Leonardo Xediek Consani ◽  
Douglas Duenhas de Azevedo ◽  
Marcelo Ferraz Mesquita ◽  
Wilson Batista Mendes ◽  
Paulo César Saquy

The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.


Author(s):  
Sara T. Alzayyat ◽  
Ghadah A. Almutiri ◽  
Jawhara K. Aljandan ◽  
Raneem M. Algarzai ◽  
Soban Q. Khan ◽  
...  

Abstract Objective The aim of this study was to evaluate the effects of the addition of low-silicon dioxide nanoparticles (nano-SiO2) on the flexural strength and elastic modulus of polymethyl methacrylate (PMMA) denture base material. Materials and Methods A total of 50 rectangular acrylic specimens (65 × 10 × 2.5 mm3) were fabricated from heat-polymerized acrylic resin. In accordance with the amount of nano-SiO2, specimens were divided into the following five groups (n = 10 per group): a control group with no added SiO2, and four test groups modified with 0.05, 0.25, 0.5, and 1.0 wt% nano-SiO2 of acrylic powder. Flexural strength and elastic modulus were measured by using a 3-point bending test with a universal testing machine. A scanning electron microscope was used for fracture surface analyses. Data analyses were conducted through analysis of variance and Tukey’s post hoc test (α = 0.05). Results Compared with the control group, flexural strength and modulus of elasticity tended to significantly increase (p ˂ 0.001) with the incorporation of nano-SiO2. In between the reinforced groups, the flexural strength significantly decreased (p ˂ 0.001) as the concentrations increased from 0.25 to 1.0%, with the 1.0% group showing the lowest value. Furthermore, the elastic modulus significantly increased (p ˂ 0.001) at 0.05% followed by 1.0%, 0.25%, 0.5%, and least in control group. Conclusion A low nano-SiO2 addition increased the flexural strength and elastic modulus of a PMMA denture base resin.


2021 ◽  
Vol 25 (2) ◽  
pp. 108-113
Author(s):  
Ozlem Gurbuz Oflezer ◽  
Hakan Bahadır ◽  
Senem Ünver ◽  
Ceyhan Oflezer

Summary Background/Aim: Relining is defined as the procedure used to resurface the tissue side of a denture with new base material, thus producing an accurate adaptation is provided at the denture foundation area. During mastication, relined dentures have to withstand masticatory forces to prevent fracture. The aim of this study was to evaluate the flexural strength of acrylic resin denture base relined with different methods and materials. Material and Methods: Fourteen experimental groups and one control group were determined to consider different reline materials and processing methods. Acrylic resin specimens were prepared with the dimensions of 65× 10× 1.5 mm and reline materials (1.5 mm thickness) were placed on acrylic resins. Reline material was not used in control group specimens. Flexural strength values of relined and control specimens were measured with three-point bending test at a speed of 5 mm/min. Data were analyzed with using one way Anova and Student t tests. Results: The highest flexural strength values were shown in control group (86.51±1.08 MPa). There were significant differences among relined specimens (p< 0.05). For the relined specimens, the highest flexural strength values were found in the relined specimens with denture base material (77.90±1.93 MPa), and the lowest values were found in relined with autopolymerize acrylic material (59.81±1.50 MPa). Conclusions: Relining of the heat cure denture base material significantly decreases the flexural strength for all processing methods and materials.


Author(s):  
Piyali Sarkar ◽  
Sandeep Garg ◽  
Nidhi Mangtani Kalra

Abstract Aim This article evaluates the effect of incorporating different concentrations of silver nanoparticles as an antimicrobial agent on the flexural and impact strength of heat-cured denture base resin. Material and Methods A total of 80 specimens of polymethyl methacrylate resin were fabricated (40 for flexural strength and 40 for impact strength). Specimens were fabricated using stainless steel die of dimension 65 mm × 10 mm × 2.5 mm as per the American Dental Association specification no. 12, and 50 mm × 6 mm × 4 mm as per ISO 1567:1999 for flexural strength and impact strength, respectively, and were divided into four groups (A, B, C, and D) based on the concentrations of silver nanoparticles (0%, 2.5%, 5%, and 10%). The specimens were subjected to three-point bending test and Izod impact tester for testing flexural and impact strength, respectively. Data obtained was compiled and analyzed using one-way analysis of variance and post hoc tests. Results Results showed that for both the properties, maximum strength was observed in group A (control) followed by groups B and C, and minimum was observed in group D. A statistically significant difference in flexural strength was found among all the groups, whereas no statistically significant difference in impact strength was found among any of the groups. Conclusion Within the limitations of this in vitro study, it was concluded that though incorporation of silver nanoparticles exhibited no effect on the impact strength of heat cure denture base resin, it decreased the flexural strength, so it should be used cautiously.


2018 ◽  
Vol 2 (2) ◽  
pp. 120-131
Author(s):  
Fahd Ikram

Despite the development of many denture base material like chrome-cobalt, fluid and plastic material but the heat cure polymethylmethacrylate considered as the most widely used denture base material. The aims of this study to evaluate and compare the impact strength and surface roughness of heat cured denture base resin after immersing incoca-cola drink for two and four weeks. Methods: A total number of 40 samples were prepared, 30 samples for impact strength test and 10 samples for surface roughness test. The samples were divided into three group; A (control), B (2 weeks immersed in coca cola drink), and C (4 weeks immersed in coca cola drink). Result: Data analyzed by using SPSS software with ANOVA test indicated a non significant differences between the different tested groups, however the samples that were immersed in coca cola drink for 4 weeks revealed non dramatic increase in surface roughness, while the samples that were immersed for 2 weeks showed a non dramatic decrease in the impact strength. Conclusions: The coca cola drink non significantly caused dropping in the tested properties in comparison to the control group.


Author(s):  
Mohammed Moustafa Ahmed Gad ◽  
Mohamed Saber Ali ◽  
Ahmad M. Al-Thobity ◽  
Yousif A. Al-Dulaijan ◽  
Mai El Zayat ◽  
...  

Abstract Objective This study aimed to evaluate the effect of nanodiamond (ND) addition to repair resin with repair gap modifications on the flexural and impact strength of repaired polymethylmethacrylate denture base. Materials and Methods Heat-polymerized acrylic resin specimens (N = 100/test) were prepared and sectioned to half creating two repair gaps: 2.5- and 0 mm with 45 degrees beveling. They were further divided into subgroups (n = 20) according to ND concentration (control, 0.25%ND, and 0.50%ND), thermocycling (500 cycles) was done to half the specimens in each subgroup. Flexural strength was tested using 3-point bending test and impact strength was tested by Charpy's impact test. Analysis of variance and post-hoc Tukey's tests were performed for data analysis (α = 0.05). Scanning electron microscope was employed for fracture surface analysis and ND distribution. Results Before and after thermocycling, the addition of ND significantly increased the flexural strength and elastic modulus in comparison to control group (p ˂ 0.001), while 0 mm repair gap showed insignificant difference between ND-reinforced groups (p ˃ 0.05). Regarding impact strength, ND addition increased the impact strength with 0 mm gap in comparison to control and 2.5 mm with ND (p˂0.001), while later groups showed no significant in between (p ˃ 0.05). Comparing thermocycling effect per respective concentration and repair gap, thermocycling adversely affected all tested properties except elastic modulus with 0 mm–0.25 and 0 mm–0.5% and impact strength with 2.5 mm, 2.5 mm–0.25%, 2.5 mm– 0.5% (p ˃ 0.05). Conclusion ND addition combined with decreased repair gap improved the flexural strength, elastic modulus, and impact strength of repaired denture resin, while thermocycling has a negative effect on denture repair strength.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4146 ◽  
Author(s):  
Grzegorz Chladek ◽  
Katarzyna Pakieła ◽  
Wojciech Pakieła ◽  
Jarosław Żmudzki ◽  
Marcin Adamiak ◽  
...  

Colonization of polymeric dental prosthetic materials by yeast-like fungi and the association of these microorganisms with complications occurring during prosthetic treatment are important clinical problems. In previously presented research, submicron inorganic particles of silver sodium hydrogen zirconium phosphate (S–P) were introduced into poly(methyl methacrylate) (PMMA) denture base material which allowed for obtaining the antimicrobial effect during a 90 day experiment. The aim of the present study was to investigate the flexural strength, impact strength, hardness, wear resistance, sorption, and solubility during three months of storage in distilled water. With increasing S–P concentration after 2 days of conditioning in distilled water, reduced values of flexural strength (107–72 MPa), impact strength (18.4–5.5 MPa) as well as enhanced solubility (0.95–1.49 µg/mm3) were registered, but they were at acceptable levels, and the sorption was stable. Favorable changes included increased hardness (198–238 MPa), flexural modulus (2.9–3.3 GPa), and decreased volume loss during wear test (2.9–0.2 mm3). The percentage changes of the analyzed properties during the 90 days of storage in distilled water were similar for all materials.


2019 ◽  
Vol 10 (2) ◽  
pp. 1464-1469
Author(s):  
Adnan R. Al Assal ◽  
Abdalbaset A Fatalla ◽  
Mohammed Moudhaffar ◽  
Ghasak H Jani

The general upgrading of polymer denture base material and research continuously looking for ideal restorative dental material with better properties, adequate esthetic properties, less expensive and easier to handle material to develop photo polymerization dental materials. This study was conducted to evaluate the effect of addition polyamide on mechanical microparticle properties light cure denture base material. One hindered sixty specimens from light-cured acrylic resin (Aurora). The divided mainly into four groups according to test used (Transverse strength test, impact strength test, hardness test and tensile strength test) with 40 specimens for each group. The results show an increase in Transverse strength, impact strength, hardness and tensile strength in all experimental group when compared to control group the highest mean values for all tests included in the study appeared in group B 1% polyamide. The addition of polyamide microparticle improves transverse, tensile, impact strength and hardness properties of denture base material.


2015 ◽  
Vol 3 (2) ◽  
pp. 68-73
Author(s):  
Riezka Hanafiah Putri ◽  
Zulkarnain Agus ◽  
Eni Rahmi

Heat-polymerized  acrylic  resins  is  the  most  used  denture  base  material  in  prosthodontics.  One  of  mechanical properties of acrylic resins is transverse strength. It represents the masticatory pressure that is applied to denture base. Black tea is the second largest consumed beverage in the world. The aim of this study was to investigate the effect of black tea beverage on transverse strength of heat-polymerized acrylic resins. A total of 24 heat-polymerized acrylic resin plates (65×10×2,5 mm) were immersed in black tea beverage for 1, 4, and 20 days as treatment group and in aquadest for 1, 4, and 20 days as control group. The transverse strength of  acrylic samples were measured by three–point bending test by universal testing machine. Data were statistically analyzed using Independent t test. The transverse strength values of acrylic resin immersed in black tea beverage had no significant differences to the transverse strength values of acrylic resin immersed in aquadest with similar immersion time (p>0,05). There was no effect of black tea beverage on transverse strength of heat-polymerized acrylic resins. Immersion time decrease the transverse strength of heat-polymerized acrylic resins due to water sorption. Keywords: Heat-polymerized acrylic resins, black tea, transverse strength


2021 ◽  
Vol 17 (1) ◽  
pp. 49-55
Author(s):  
Ni Kadek Sugianitri ◽  
◽  
Suhendra Suhendra ◽  

Introduction: Acrylic resin is the most common material for the denture base because the acrylic resin has good esthetics, ease of processing, reparability, and inexpensive. A disadvantage of acrylic resin is that it is easy to be cracked. One of the ways to resolve this problem is by adding agave sisalana fiber and E-glass fiber. The purpose of this study was to find out the effect of the addition of agave sisalana fiber and E-glass fiber on the impact strength of an acrylic resin denture plate reparation. Material and Method: The experiment involved twenty-seven plates of heat-cured acrylic with the dimensions of 55x 10 x 10 mm with the 26 x 5 x 4 mm for the cavity to measure, each measurement divided into three groups, with nine samples for each group. The first group was a control group (without fiber), the second group was a group with agave sisalana fiber addition, the third group was a group with e-glass fiber addition. All plates were soaked in distillation water for one day at 37o C. Plates were tested for impact strength using the Charpy method. All data obtained were analyzed with one-way ANOVA followed by LSD (Least Significant Difference) with p<0,05. Result and Discussion: The result showed that the influences of impact strength between without fiber with agave sisalana fiber and E-glass fiber addition on acrylic denture reparation. Acrylic denture reparation in both fibers with concentration 3,3%, agave sisalana fiber has the highest impact strength rather than e-glass fiber. Conclusion: The conclusion of this study is that there is an increase in impact strength with agave sisalana fiber and E-glass fiber addition on acrylic denture reparation and agave sisalana fiber has the highest impact strength.


Sign in / Sign up

Export Citation Format

Share Document