scholarly journals Targeted Delivery of Paclitaxel in Liver Cancer Using Hyaluronic Acid Functionalized Mesoporous Hollow Alumina Nanoparticles

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yu Gao ◽  
Lili Hu ◽  
Ying Liu ◽  
Xiaoyan Xu ◽  
Chao Wu

Hyaluronic acid functionalized mesoporous hollow alumina nanoparticles (HMHA) were used as a tumor-targeted delivery carrier for liver cancer therapy. Paclitaxel (PAC) incorporated in the carrier by the adsorption method was analyzed by X-ray diffraction and differential scanning calorimetry. PAC was found to be in an amorphous state. The hyaluronic acid coated on the surface of mesoporous hollow alumina nanoparticles (MHA) regulated the drug release rate and the loaded samples obtained a sustained drug release. In vitro experiments demonstrated that paclitaxel-hyaluronic acid functionalized mesoporous hollow alumina nanoparticles (PAC-HMHA) had a high cellular uptake, which increased the drug level in tumor tissues and was beneficial to promote apoptosis. An in vivo tumor inhibition rate study demonstrated that PAC-HMHA (64.633 ± 4.389%) had a better antitumor effect than that of paclitaxel-mesoporous alumina nanoparticles (PAC-MHA, 56.019 ± 6.207%) and pure PAC (25.593 ± 4.115%). Therefore it can be concluded that PAC-HMHA are a prospective tumor-targeted delivery medium and can be useful for future cancer therapy.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1181 ◽  
Author(s):  
Somayeh Rezaei ◽  
Soheila Kashanian ◽  
Yadollah Bahrami ◽  
Luis J. Cruz ◽  
Marjan Motiei

Novel reduction-responsive hyaluronic acid–chitosan–lipoic acid nanoparticles (HACSLA-NPs) were designed and synthesized for effective treatment of breast cancer by targeting Cluster of Differentiation 44 (CD44)-overexpressing cells and reduction-triggered 17α-Methyltestosterone (MT) release for systemic delivery. The effectiveness of these nanoparticles was investigated by different assays, including release rate, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT), lactate dehydrogenase (LDH), caspase-3 activity, Rhodamine 123 (RH-123), and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). In vitro experiments revealed that Methyltestosterone/Hyaluronic acid–chitosan–lipoic acid nanoparticles (MT/HACSLA-NPs) illustrated a sustained drug release in the absence of glutathione (GSH), while the presence of GSH led to fast MT release. HACSLA-NPs also showed high cellular internalization via CD44 receptors, quick drug release inside the cells, and amended cytotoxicity against positive CD44 BT-20 breast cancer cell line as opposed to negative CD44, Michigan Cancer Foundation-7 (MCF-7) cell line. These findings supported that these novel reduction-responsive NPs can be promising candidates for efficient targeted delivery of therapeutics in cancer therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Nagaraja SreeHarsha ◽  
Chandramouli Ramnarayanan ◽  
Bandar E. Al-Dhubiab ◽  
Anroop B. Nair ◽  
Jagadeesh G. Hiremath ◽  
...  

Sitagliptin (MK–0431) is a widely and commonly used oral hypoglycemic drug in the treatment of type 2 diabetes mellitus; patients typically take higher doses of this drug (50 mg, twice daily). One drawback is that only 38% of the drug is bound reversibly to plasma proteins and 79% is excreted in urine without being metabolized. To overcome this issue, there is a need for a better drug-delivery method to improve its efficacy in patients. It has been found that in existing formulations, the drug content is 72.5% ± 5% and the percentage yield is 84.9% ± 3%. In this study, sitagliptin nanoparticles (sizes ranging from 210 to 618 nm) were developed. The bioadhesion properties of the nanoparticles, as well as the swelling of the nanoparticles on the mucus membrane aided in sustained drug release. The pattern of drug release was in accordance with the Peppas model. Fourier-transform infrared (FTIR) spectroscopy demonstrated that there were no significant interactions between sitagliptin and chitosan. Differential scanning calorimetry (DSC) results showed an absence of drug peaks due to the fact that the drug was present in an amorphous state. Mucoadhesive nanoparticles were formulated using sitagliptin and were effective for about 12 hours in the gastrointestinal tract. When compared to conventional sitagliptin administration, use of a nanoparticle delivery system demonstrated greater benefits for use in oral delivery applications. This is the first time that a drug-delivery method based on the mucoadhesive properties of nanoparticles could prolong the drug-release time of sitagliptin.


Author(s):  
Feng Wu ◽  
Fei Qiu ◽  
Siew Anthony Wai-Keong ◽  
Yong Diao

Background: In recent years, the emergence of stimuli-responsive nanoparticles makes drug delivery more efficient. As an intelligent and effective targeted delivery platform, it can reduce the side effects generated during drug transportation while enhancing the treatment efficacy. The stimuli-responsive nanoparticles can respond to different stimuli at corresponding times and locations to deliver and release their drugs and associated therapeutic effects. Objective: This review aims to inform researchers on the latest advances in the application of dual-stimuli responsive nanoparticles in precise drug delivery, with special attention to their design, drug release properties, and therapeutic effects. Syntheses of nanoparticles with simultaneous or sequential responses to two or more stimuli (pH-redox, pH-light, redoxlight, temperature-magnetic, pH-redox-temperature, redox-enzyme-light, etc.) and the applications of such responsivity properties for drugs control and release have become a hot topic of recent research. Methods: A database of relevant information for the production of this review was sourced, screened and analyzed from Pubmed, Web of Science, SciFinder by searching for the following keywords: “dual-stimuli responsive”, “controlled release”, “cancer therapy”, “synergistic treatment”. Results: Notably, the nanoparticles with dual-stimuli responsive function have an excellent control effect on drug delivery and release, playing a crucial part in the treatment of tumors. They can improve the encapsulation and delivery efficiency of hydrophobic chemotherapy drugs, combine chemo-photothermal therapies, apply imaging function in the diagnosis of tumors and even conduct multi-drugs delivery to overcome multi-drugs resistance (MDR). Conclusion: With the development of smart dual-stimuli responsive nanoparticles, cancer treatment methods will become more diverse and effective. All the stimuli-responsive nanoparticles functionalities exhibited their characteristics individually within the single nanosystem.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Huiling Lv ◽  
Chao Wu ◽  
Xuan Liu ◽  
Andi Bai ◽  
Yue Cao ◽  
...  

In this study, we prepared PTX-loaded mesoporous hollow SnO2 nanofibers conjugated with folic acid (SFNFP) for liver cancer therapy. According to SEM and TEM characterization, SFNF showed a mesoporous hollow structure. The average outer diameter was 200 nm, and the wall thickness was 50 nm. The DSC and XRD study showed that PTX in the channels of nanofibers was present in an amorphous state. The in vitro release experiments demonstrated that SFNF could efficiently improve the dissolution rate of PTX. Both in vitro cell experiments and in vivo antitumor experiments showed that SFNFP could efficiently inhibit the growth of liver cancer cells. Therefore, SFNF is a promising targeting antitumor drug delivery carrier.


RSC Advances ◽  
2018 ◽  
Vol 8 (66) ◽  
pp. 37623-37630 ◽  
Author(s):  
Qingli Huang ◽  
MingYan Li ◽  
LiLi Wang ◽  
Honghua Yuan ◽  
Meng Wang ◽  
...  

The rGO@CD@PEG@FA nanocomposite showed the stimulative effect of heat, pH response, and sustained drug release for cancer therapy


2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


2018 ◽  
Vol 6 (19) ◽  
pp. 3163-3180 ◽  
Author(s):  
Caifeng Deng ◽  
Xiaohong Xu ◽  
Drunp Tashi ◽  
Yongmei Wu ◽  
Bingyin Su ◽  
...  

The safe and efficient targeted delivery of chemotherapeutic drugs has remained a challenge in metastatic breast cancer therapy.


Author(s):  
DHANDAPANI NAGASAMY VENKATESH ◽  
PREETY RAO ◽  
RAMAN RAJESHKUMAR

Objective: The main objective of the present investigation was to develop microbeads of tenofovir. Tenofovir, a BCS class III drug has a poor bioavailability of 25%, and it is administered 300 mg once a day. By incorporating the drug into a microparticulate carrier, it is expected that the dissolution profile and the oral bioavailability may be increased. Methods: Reinforced gellan-chitosan and calcium chloride beads of tenofovir were prepared by ionotropic gelation method employing various different concentrations of gellan, chitosan, calcium chloride and tenofovir. The beads were evaluated for various physico-chemical parameters such as particle size determination, drug entrapment efficiency, swelling studies, infra red spectroscopy study, differential scanning calorimetry, x-ray diffraction analysis, scanning electron microscopy, in vitro drug release study, cytotoxicity study and in vivo oral bioavailability studies. Results: From the results, it can be concluded that the formulation TB-III exhibited higher drug entrapment efficiency (46.09±0.21), a higher swelling index, sustained drug release for a period of 24 h. The pharmacokinetic profile of the drug from microbeads exhibited an increased oral bioavailability (1.25 times higher than that of pure drug), decreased elimination rate (1.32 times lesser for drug in microbeads) with prolonged elimination half-life (1.32 times higher than pure tenofovir). Conclusion: Tenofovir loaded microbeads demonstrated as a better delivery system for the modified release of drug and also to navigate the drawbacks associated with the conventional therapy.


Sign in / Sign up

Export Citation Format

Share Document