scholarly journals Simulation and Sensitivity Analysis of Molybdenum Disulfide Nanoparticle Production Using Aspen Plus

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mouad Hachhach ◽  
Hanane Akram ◽  
Mounir Hanafi ◽  
Ouafae Achak ◽  
Tarik Chafik

The sensitivity analysis of molybdenum disulfide nanoparticles synthesis process is studied using Aspen Plus with the aim of investigating the effect of reactants’ amounts on the production of molybdenum disulfide nanoparticles. The adopted approach consists in simulating the synthesis process based on experimental data, obtained at laboratory scale followed by sensitivity analysis with respect to the following precursors: ammonium heptamolybdate, elemental sulfur, and hydrazine used as a reducing agent. The sensitivity analysis revealed that the precursors have more significant impact on the obtained amount of molybdenum disulfide compared to hydrazine. The obtained result showed that the approach adopted in the study might be of interest for further investigation of the process design and scaling-up.

Computation ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 86
Author(s):  
Vera Marcantonio ◽  
Andrea Monforti Ferrario ◽  
Andrea Di Carlo ◽  
Luca Del Zotto ◽  
Danilo Monarca ◽  
...  

Biomass is one of the most widespread and accessible energy source and steam gasification is one of the most important processes to convert biomass into combustible gases. However, to date the difference of results between the main models used to predict steam gasification producer gas composition have been not analyzed in details. Indeed, gasification, involving heterogeneous reactions, does not reach thermodynamic equilibrium and so thermodynamic models with experimental corrections and kinetic models are mainly applied. Thus, this paper compares a 1-D kinetic model developed in MATLAB, combining hydrodynamics and reaction kinetics, and a 0-D thermodynamic model developed in Aspen Plus, based on Gibbs free energy minimization applying the quasi-equilibrium approach, calibrated by experimental data. After a comparison of the results of the models against experimental data at two S/B ratios, a sensitivity analysis for a wide range of S/B ratios has been performed. The experimental comparison and sensitivity analysis shows that the two models provide sufficiently similar data in terms of the main components of the syngas although the thermodynamic model shows, with increasing S/B, a greater increase of H2 and CO2 and lower decrease of CH4 and CO respect to the kinetic one and the experimental data. Thus, the thermodynamic model, despite being calibrated by experimental data, can be used mainly to analyze global plant performance due to the reduced importance of the discrepancy from a global energy and plant perspective. Meanwhile, the more complex kinetic model should be used when a more precise gas composition is needed and, of course, for reactor design.


Author(s):  
Jonas Gnauert ◽  
Felix Schlüter ◽  
Georg Jacobs ◽  
Dennis Bosse ◽  
Stefan Witter

AbstractWind turbines (WT) must be further optimized concerning availability and reliability. One of the major reasons of WT downtime is the failure of gearbox bearings. Some of these failures occur, due to the ring creep phenomenon, which is mostly detected in the planetary bearings. The ring creep phenomenon describes a relative movement of the outer ring to the planetary gear. In order to improve the understanding of ring creep, the finite element method (FEM) is used to simulate ring creep in planetary gears. First, a sensitivity analysis is carried out on a small bearing size (NU205), to characterize relevant influence parameters for ring creep—considered parameters are teeth module, coefficient of friction, interference fit and normal tooth forces. Secondly, a full-scale planetary bearing (SL185030) of a 1MW WT is simulated and verified with experimental data.


1995 ◽  
Vol 03 (02) ◽  
pp. 429-439 ◽  
Author(s):  
S. G. RUDNEV ◽  
A. A. ROMANYUKHA

Using ordinary differential equations, we propose a mathematical model describing an “averaged” dynamics of variables involved in which some parameters are shown to be important characteristics of lung resistance. The model consists of modified D.A. Lauffenburger’s mathematical model for inflammatory reaction in lungs, and the model of humoral immune response (G. I. Marchuk). Coefficients are identified against clinical and experimental data. We attempt to elucidate some disease characteristics in terms of sensitivity analysis of model solutions with respect to parameters variations.


Author(s):  
Sebastien Sequeira ◽  
Kevin Bennion ◽  
J. Emily Cousineau ◽  
Sreekant Narumanchi ◽  
Gilberto Moreno ◽  
...  

Abstract One of the key challenges for the electric vehicle industry is to develop high-power-density electric motors. Achieving higher power density requires efficient heat removal from inside the motor. In order to improve thermal management, a multi-physics modeling framework that is able to accurately predict the behavior of the motor, while being computationally efficient, is essential. This paper first presents a detailed validation of a Lumped Parameter Thermal Network (LPTN) model of an Internal Permanent Magnet synchronous motor within the commercially available Motor-CAD® modeling environment. The validation is based on temperature comparison with experimental data and with more detailed Finite Element Analysis (FEA). All critical input parameters of the LPTN are considered in detail for each layer of the stator, especially the contact resistances between the impregnation, liner, laminations and housing. Finally, a sensitivity analysis for each of the critical input parameters is provided. A maximum difference of 4% - for the highest temperature in the slot-winding and the end-winding - was found between the LPTN and the experimental data. Comparing the results from the LPTN and the FEA model, the maximum difference was 2% for the highest temperature in the slot-winding and end-winding. As for the LTPN sensitivity analysis, the thermal parameter with the highest sensitivity was found to be the liner-to-lamination contact resistance.


Sign in / Sign up

Export Citation Format

Share Document