Validation and Parametric Investigations of an Internal Permanent Magnet Motor Using a Lumped Parameter Thermal Model

Author(s):  
Sebastien Sequeira ◽  
Kevin Bennion ◽  
J. Emily Cousineau ◽  
Sreekant Narumanchi ◽  
Gilberto Moreno ◽  
...  

Abstract One of the key challenges for the electric vehicle industry is to develop high-power-density electric motors. Achieving higher power density requires efficient heat removal from inside the motor. In order to improve thermal management, a multi-physics modeling framework that is able to accurately predict the behavior of the motor, while being computationally efficient, is essential. This paper first presents a detailed validation of a Lumped Parameter Thermal Network (LPTN) model of an Internal Permanent Magnet synchronous motor within the commercially available Motor-CAD® modeling environment. The validation is based on temperature comparison with experimental data and with more detailed Finite Element Analysis (FEA). All critical input parameters of the LPTN are considered in detail for each layer of the stator, especially the contact resistances between the impregnation, liner, laminations and housing. Finally, a sensitivity analysis for each of the critical input parameters is provided. A maximum difference of 4% - for the highest temperature in the slot-winding and the end-winding - was found between the LPTN and the experimental data. Comparing the results from the LPTN and the FEA model, the maximum difference was 2% for the highest temperature in the slot-winding and end-winding. As for the LTPN sensitivity analysis, the thermal parameter with the highest sensitivity was found to be the liner-to-lamination contact resistance.

Author(s):  
Sebastien Sequeira ◽  
Kevin Bennion ◽  
J. Emily Cousineau ◽  
Sreekant Narumanchi ◽  
Gilbert Moreno ◽  
...  

Abstract One of the key challenges for the electric vehicle industry is to develop high-power-density electric motors. Achieving higher power density requires efficient heat removal from inside the motor. In order to improve thermal management, a multi-physics modeling framework that is able to accurately predict the behavior of the motor, while being computationally efficient, is essential. This paper first presents a detailed validation of a Lumped Parameter Thermal Network (LPTN) model of an Internal Permanent Magnet (IPM) synchronous motor within the commercially available Motor-CAD® modeling environment. The IPM motor’s stator is studied at steady state, and winding losses are generated by a constant DC current. The validation is based on temperature comparison with experimental data and with more detailed Finite Element Analysis (FEA). All critical input parameters of the LPTN are considered in detail for each layer of the stator, especially the contact resistances between the impregnation, liner, laminations and housing. Finally, a sensitivity analysis for each of the critical input parameters is provided. A maximum difference of 4% — for the highest temperature in the slot windings and the end windings — was found between the LPTN and the experimental data. Comparing the results from the LPTN and the FEA model, the maximum difference was 2% for the highest temperature in the slot windings and end windings. As for the LTPN sensitivity analysis, the thermal parameter with the highest sensitivity was found to be the liner-to-lamination contact resistance. The latter is often ignored in the literature, whereas its impact on temperature rise was found to be more significant than any other contact resistance within the stator.


2011 ◽  
Vol 105-107 ◽  
pp. 160-163
Author(s):  
Yong Juan Cao ◽  
Yun Kai Huang ◽  
Long Jin

Due to its compact construction and high power density, the axial-flux permanent-magnet (AFPM) machine with coreless stator has obtained more and more attention and interest from researchers. For an AFPM machine with coreless stator, the axial magnetic attraction force may cause the rotors’ deflection and affect the machine’s reliability. In this paper, the magnetic field and the rotor mechanical strength of a coreless stator AFPM machine are studied. Finite-element method and analytic method are both used to calculate the axial attraction magnetic force between the two rotor discs. Structure finite-element analysis is used to simulate the maximum stress and deflection due to the axial magnetic force. The research is very significant to the power density elevation of the AFPM machine.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2240
Author(s):  
Sajjad Ahmadi ◽  
Thierry Lubin ◽  
Abolfazl Vahedi ◽  
Nasser Taghavi

This paper presents a multi-objective optimal rotor design for an interior permanent magnet synchronous motor (IPMSM) based on finite element analysis. Due to the importance of torque characteristic in electromagnetic design of IPMSMs, the main efforts of this study are focused on finding a proper trade-off for its torque profile challenges. In this regard, in order to attain high average torque and low torque ripple, the influence of several key factors, such as the permanent magnet (PM) arrangements, PM positions and PM sizes, are examined. Subsequently, according to the outcomes of the performed sensitivity analysis, the appropriate variation interval of the parameters as well as their initial values is determined. Employing such a deterministic optimization algorithm, which does not need large sample points, minimizes the finite element computational cost and leads to accelerate the convergence process. The two-dimensional finite element model (FEM) of an IPMSM is used to perform a sensitivity analysis and establish a multi-objective FEM-based optimization.


2015 ◽  
Vol 785 ◽  
pp. 263-268
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal bin Mohd Nor

This paper deduces from Finite-Element Analysis (FEA), the influence of leading design parameters on the performance of a novel T-shaped permanent magnet (PM), quasi-Halbach magnetized tubular linear motor. The proposed motor is designed and developed for small reciprocating applications. In order to obtain the maximum power density, a two-dimensional Finite-Element model is developed to investigate the performance of the proposed machine. The proposed T-shaped PM structure has a higher power density as compared to the conventional rectangular-shaped PM structure. The losses of the motor, such as copper loss and iron loss, as well as the efficiency, are established as functions of a set of motor leading design parameters. It is shown that the developed motor produce satisfactory output power, around 85 W, which is enough to operate the direct-drive reciprocating compressor of a household refrigerator.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Bo Wang ◽  
Gaurang Vakil ◽  
Ye Liu ◽  
Tao Yang ◽  
Zhuoran Zhang ◽  
...  

Permanent magnet synchronous machines provide many dramatic electromagnetic performances such as high efficiency and high power density, which make them more competitive in aircraft electrification, whereas, designing a permanent magnet starter–generator (PMSG), with given consideration to fault tolerance (FT), is a significant challenge and requires great effort. In this paper, a comprehensive FT PMSG design process is proposed which is applied to power systems of turboprops. Firstly, potential slot/pole combinations were selected based on winding factor, harmonic losses and manufacture issues. Then, pursuing high power density, a multiple objective optimization process was carried out to comprehensively rank performances. To meet a fault tolerance target, electrical, magnetic and thermal isolation topologies were investigated and compared, among which 18 slot/12 pole with dual three-phase was selected as the optimal one, with a power density of 7.9 kW/kg. Finally, a finite element analysis verified the performance in normal and post-fault scenarios. The candidate machine has merits concerning high power density and post-fault performance.


2014 ◽  
Vol 651-653 ◽  
pp. 808-811
Author(s):  
Hao Ming Zhang ◽  
Hong Li ◽  
Lian Soon Peh

The present motors are required to high speed, high efficiency, high power density but low pulsating torque. Traditonal rare-earth permanent magnet motor shows its defect; Halbach Array is a new type of permanent magnet structure: magnet field presents unilateral with the sinusoidal distribution. The structure makes the magnetic density of motor’s air gap larger relatively while the magnetic density of rotor’s yoke smaller. And it can help to reduce the motor’s pulsating torque and its size, as well as to raise the power density of motor. The result of finite element analysis based on ANSYS shows that the above structure is able to decrease the mass of motor, to widen the width of air gap and obviously to improve the multi properties of motors.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 365-373
Author(s):  
Shuo Yang ◽  
Yacine Amara ◽  
Wei Hua ◽  
Georges Barakat

AbstractThe purpose of this article is to present a generic reluctance network modeling tool dedicated to the modeling of electrical machines. This tool is used for the study of permanent magnet machines. The focus will be on the modeling methodology and software implementation. More precisely, the aspects related to genericity will be discussed. In order to validate the developed tool, the simulation of a 12 slot/10 pole flux-switching permanent magnet machine is conducted, and the results obtained from this generic framework are compared to the corresponding finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document