scholarly journals Moisture Sorption Isotherms and Prediction Models of Carboxymethyl Chitosan Films from Different Sources with Various Plasticizers

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Juthamas Tantala ◽  
Chitsiri Rachtanapun ◽  
Wirongrong Tongdeesoontorn ◽  
Kittisak Jantanasakulwong ◽  
Pornchai Rachtanapun

Carboxymethyl chitosan (CMCH) from different chitosan sources (shrimp, crab, and squid) and molecular sizes (polymer and oligomer) were synthesized via carboxymethylation reaction. The CMCH films were prepared by solution casting. All the CMCH films had high water solubility, higher than 85% of the dry matter of the films. The sorption isotherm of the CMCH films was evaluated at several values of relative humidity (0% RH, 23% RH, 34% RH, 43% RH, 65% RH, 77% RH, and 86% RH) at 25 ± 1°C. The equilibrium moisture content values of all the CMCH films were low at lower aw but increased considerably above aw = 0.65. The sigmoidal moisture sorption isotherms of this product can be classified as type II. Understanding of sorption isotherms is an important prerequisite for the prediction of moisture sorption properties of films via moisture sorption empirical models. The experimental data were analyzed and fitted by the nine sorption models. The various constants determined by linear fitting of the sorption equation with r2 values were in the range of 0.7647 to 0.999. The GAB model was found to be the best-fitted model for CMCH films (aw = 0.23–0.86, 25 ± 1°C), and the model presented the optimal root-mean-square percentage error (%RMS) values when compared with other models. In conclusion, it can be stated that the GAB model was found to be better estimated for predicting the CMCH films than other models. Therefore, the constant derived from different sorption models were applied for use in terms of information and for the determination of the stability of CMCH packaging films for specific end uses.

Author(s):  
André L. D. Goneli ◽  
Paulo C. Corrêa ◽  
Gabriel H. H. de Oliveira ◽  
Osvaldo Resende ◽  
Munir Mauad

ABSTRACT Sorption isotherms are of great importance in post-harvest procedures, especially for predicting drying and storage, which help to establish the final moisture content of the product under certain environmental condition. Hysteresis is a phenomenon that occurs due to the difference between adsorption and desorption curves, which aids the evaluation of chemical and microbiological deteriorations, indicating the stability of stored products. Moisture sorption isotherms of castor beans were determined and hysteresis was analyzed. Static gravimetric technique at different temperatures (25, 35, 45 and 55 ± 1 °C) was used. Saturated salt solutions in the range of 37-87% ± 2% were utilized to create the required controlled relative humidity environment. Equilibrium moisture content data were correlated by different mathematical models and the Modified Halsey model presented good adjustment for the data, according to statistical procedures. Hysteresis between adsorption and desorption isotherms is present over the range of 0.2-0.9 of water activity, regardless of the temperature. This phenomenon decreases with temperature increase.


Author(s):  
Aslı Zungur Bastıoğlu ◽  
Safiye Nur Dirim ◽  
Figen Kaymak Ertekin

Yogurt powder was produced by freeze drying and with added candied chestnut puree at ratios of 5, 10, and 20 % by weight. Moisture sorption isotherms of yogurt powder samples, plain (YP), and containing 5, 10, 20% candied chestnut puree (CCP) were determined at 25°C using the standard, static-gravimetric method. The experimental adsorption data of yogurt powders at 25°C were fitted to 14 sorption equations which are most widely used to fit experimental sorption data of various food materials. The parameters of the sorption models were estimated from the experimental results by using the nonlinear regression analysis. The GAB model gave the closet fit to the sorption data of freeze dried yogurt powders with candied chestnut puree at 25°C. BET, Ferro Fanton, Henderson, Halsey, Oswin and Modified Oswin models are also acceptable for describing the adsorption isotherms for freeze dried yogurt with candied chestnut puree at 25°C.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 303 ◽  
Author(s):  
Catherine Bourgault ◽  
Paul Lessard ◽  
Claire Remington ◽  
Caetano C. Dorea

Dewatering and drying of fecal sludge (FS) is a key treatment objective in fecal sludge management as it reduces volume (thereby reducing emptying frequency and associated transportation costs), inactivates pathogens, and is beneficial and/or necessary to resource recovery activities such as composting and combustion as fuel. However, studies on dewatering performances of FS are limited. The physical water distribution of such matrices is not fully understood, limiting the progress in the development and optimization of FS dewatering technologies. The objective of this study is to present a gravimetric method intended to assess the dewatering characteristics and associated modelling of FS through moisture sorption isotherms. Samples were placed in airtight jars containing different saturated salt (NaOH, CaCl2, NaCl, KCl, K2SO4) solutions to reproduce a range of relative humidity values (6 to 97%). Results confirmed the achievement of characteristic sigma-shaped moisture sorption isotherms with increasing moisture adsorption at higher values of relative humidity. Furthermore, experimental data best fit the three-parameter Guggenheim–Anderson–de Boer (GAB) model. This method can be replicated to contribute critical data about the characterization of fecal sludge, a seriously under-researched matrix.


2014 ◽  
Vol 32 (1) ◽  
pp. 52-58 ◽  
Author(s):  
José Edgar Zapata M. ◽  
Oscar Albeiro Quintero C. ◽  
Luis Danilo Porras B.

Moisture sorption isotherms of oat flakes were determined at temperatures of 5, 25 and 37°C, using a gravimetric technique in an aw range of between 0.107 and 0.855. These curves were modeled using six equations commonly applied in food. The quality of the fit was assessed with the regression coefficient (r2) and the mean relative percentage error (MRPE). The best fit were obtained with the Caurie model with r2 of 0.996, 0.901 and 0.870, and MRPE of 7.190, 17.878 and 16.206, at 5, 25 and 37°C, respectively. The equilibrium moisture presented a dependence on temperature in the studied aw range, as did the security moisture (XS). These results suggest that the recommended storage conditions of oat flakes include: a relative air humidity of 50% between 5 and 25°C and of 38% up to 37°C.


2013 ◽  
Vol 431 ◽  
pp. 32-36 ◽  
Author(s):  
Rungsiri Suriyatem ◽  
Pornchai Rachtanapun

Rice starch/carboxymethyl cellulose from durian rind (RS/CMCd) blend films were prepared by solution casting. The effect of different ratios between rice starch and CMCd (100:0, 88:12, 67:33, 50:50, 33:67, 12:88 and 0:100) on moisture sorption isotherm of blend films was investigated. The sorption isotherm of RS/CMCd blend films was determined at various relative humidity (RH) at 25°C. The isotherm curves revealed that the highest equilibrium moisture content (EMC) was obtained from CMCd film, at aw=85. Knowledge of sorption isotherms is important to predict the moisture sorption properties of the filmsviamoisture sorption empirical models. The Lewicki, Peleg, Guggenheim-Anderson-deBoer (GAB), BrunauerEmmettTeller (BET), and Oswin models were tested to fit the experimental data. The root mean squares percentage error (%RMS) of Lewicki, Peleg, GAB, BET and Oswin was in the range of 5.3-83.1, 2.2-20.0, 6.9-20.2, 3.4-26.4 and 4.7-41.2, respectively. The Peleg model was found to be the best fitted model for RS/CMCd blend films.


1988 ◽  
Vol 7 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Z.B. Maroulis ◽  
E. Tsami ◽  
D. Marinos-Kouris ◽  
G.D. Saravacos

2006 ◽  
Vol 12 (6) ◽  
pp. 459-465 ◽  
Author(s):  
U. Siripatrawan ◽  
P. Jantawat

Moisture sorption isotherms of Thai Jasmine rice crackers were determined at 30, 45 and 60°C over a water activity range of 0.10 to 0.95 using a static gravimetric technique. Moisture sorption isotherms of rice crackers exhibited the sigmoid (Type II) shape. The moisture content of rice crackers decreased as temperature increased at a given water activity of the storage environment. The Brunauer, Emmett and Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models were applied to fit the experimental data. The isosteric heat of sorption at different moisture levels was also determined using the Clausius–Clapeyron thermodynamic equation. A nonlinear regression analysis method was determined to evaluate the parameters of sorption equations. The criteria used to evaluate the goodness of fit of each model were the mean relative percentage deviation modulus (E) and the percentage root mean square error (RMSE). The more extended range of application of the GAB equation over the BET equation was evident. The GAB model gave the best fit to the experimental sorption data for a wide range of water activity (0.10–0.95) while the BET model gave the best fit for a water activity range of less than 0.60. The GAB model is considered suitable to predict the moisture sorption isotherm of rice crackers since it gave low E and RMSE values. The heat of sorption values of rice crackers were found to be large at low moisture content and decreased with an increase in food moisture content.


2020 ◽  
Vol 21 (4) ◽  
pp. 11-20
Author(s):  
Maha Muhyi Alhussaini ◽  
Hassanain A. Hassan ◽  
Nada S. Ahmedzeki

   The moisture sorption isotherms of Mefenamic acid tablets were investigated by measuring the experimental equilibrium moisture content (EMC) using the static method of saturated salt solutions at three temperatures (25, 35, and 45°C) and water activity range from 0.056 to 0.8434. The results showed that EMC increased when relative humidity increased and the sorption capacity decreased, the tablets became less hygroscopic and more stable when the temperature increased at constant water activity. The sorption curves had a sigmoid shape, type II according to Brunauer’s classification. The hysteresis effect was significant along with the whole sorption process. The results were fitted to three models: Oswin, Smith, and Guggenhein - Anderson and de Boer. According to the fitting results, the GAB model was the most appropriate model to describe the sorption behavior of Mefenamic acid; it had a regression coefficient range (0.9803-0.994), %E (0.69-4.06), and low values of SEE (0.85-2.2). The monolayer moisture content was calculated using the GAB model and it was concluded that the tablets should be stored at moisture content equal or slightly higher than (0.2046, 0.1843, and 0.1437 %) for desorption and (0.2073, 0.1269, and 0.1452 %) for adsorption for the three temperatures.


Sign in / Sign up

Export Citation Format

Share Document