scholarly journals Identifying the Factors Contributing to Injury Severity in Work Zone Rear-End Crashes

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Kairan Zhang ◽  
Mohamed Hassan

Egypt’s National Road Project is a large infrastructure project aiming to upgrade the existing network of 2500 kilometers as well as constructing new roads of 4000 kilometers to meet today’s need. Increasing highway work zones eventually direct the challenges for traffic safety and mobility. Realizing the need for mitigating the impact of such a challenging scenario, this paper aims to investigate and identify the factors of work zone rear-end crash severity. In this regard, a random parameter ordered probit model was applied to analyze data on the Egyptian long-term highway work zone projects during the period of 2010 to 2017. The factors of speeding and foggy weather conditions are found to be the key indicators for modeling the random parameters. Besides, during the weekend and at nighttime, there is a higher risk of rear-end crash in work zones, while heavy and passenger vehicles are at greater risk in this regard. It is anticipated that the findings of this study would facilitate transport agencies in developing effective measures to ensure safe mobility across work zones.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Željko Šarić ◽  
Xuecai Xu ◽  
Daiquan Xiao ◽  
Joso Vrkljan

AbstractAlthough the pedestrian deaths have been declining in recent years, the pedestrian-vehicle death rate in Croatia is still pretty high. This study intended to explore the injury severity of pedestrian-vehicle crashes with panel mixed ordered probit model and identify the influencing factors at intersections. To achieve this objective, the data were collected from Ministry of the Interior, Republic of Croatia from 2015 to 2018. Compared to the equivalent random-effects and random parameter ordered probit models, the proposed model showed better performance on goodness-of-fit, while capturing the impact of exogenous variables to vary among the intersections, as well as accommodating the heterogeneity issue due to unobserved effects. Results revealed that the proposed model can be considered as an alternative to deal with the heterogeneity issue and to decide the factor determinants. The results may provide beneficial insight for reducing the injury severity of pedestrian-vehicle crashes.


Author(s):  
Michelle M. Mekker ◽  
Yun-Jou Lin ◽  
Magdy K. I. Elbahnasawy ◽  
Tamer S. A. Shamseldin ◽  
Howell Li ◽  
...  

Extensive literature exists regarding recommendations for lane widths, merging tapers, and work zone geometry to provide safe and efficient traffic operations. However, it is often infeasible or unsafe for inspectors to check these geometric features in a freeway work zone. This paper discusses the integration of LiDAR (Light Detection And Ranging)-generated geometric data with connected vehicle speed data to evaluate the impact of work zone geometry on traffic operations. Connected vehicle speed data can be used at both a system-wide (statewide) or segment-level view to identify periods of congestion and queueing. Examples of regional trends, localized incidents, and recurring bottlenecks are shown in the data in this paper. A LiDAR-mounted vehicle was deployed to a variety of work zones where recurring bottlenecks were identified to collect geometric data. In total, 350 directional miles were covered, resulting in approximately 360 GB of data. Two case studies, where geometric anomalies were identified, are discussed in this paper: a short segment with a narrow lane width of 10–10.5 feet and a merging taper that was about 200 feet shorter than recommended by the Manual on Uniform Traffic Control Devices. In both case studies, these work zone features did not conform to project specifications but were difficult to assess safely by an inspector in the field because of the high volume of traffic. The paper concludes by recommending the use of connected vehicle data to systematically identify work zones with recurring congestion and the use of LiDAR to assess work zone geometrics.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Daiquan Xiao ◽  
Quan Yuan ◽  
Shengyang Kang ◽  
Xuecai Xu

This study intended to investigate the crash injury severity from the insights of the novice and experienced drivers. To achieve this objective, a bivariate panel data probit model was initially proposed to account for the correlation between both time-specific and individual-specific error terms. The geocrash data of Las Vegas metropolitan area from 2014 to 2017 were collected. In order to estimate two (seemingly unrelated) nonlinear processes and to control for interrelations between the unobservables, the bivariate random-effects probit model was built up, in which injury severity levels of novice and experienced drivers were addressed by bivariate (seemingly unrelated) probit simultaneously, and the interrelations between the unobservables (i.e., heterogeneity issue) were accommodated by bivariate random-effects model. Results revealed that crash types, vehicle types of minor responsibility, pedestrians, and motorcyclists were potentially significant factors of injury severity for novice drivers, while crash types, driver condition of minor responsibility, first harm, and highway factor were significant for experienced drivers. The findings provide useful insights for practitioners to improve traffic safety levels of novice and experienced drivers.


Author(s):  
Mustafa Suhail Almallah ◽  
Qinaat Hussain ◽  
Wael K. M Alhajyaseen ◽  
Tom Brijs

Work zones are road sections where road construction or maintenance activities take place. These work zones usually have different alignment and furniture than the original road and thus temporary lower speeds are adopted at these locations. However, drivers usually face difficulty in adopting the new speed limit and maneuvering safely due to the change in alignment. Therefore, work zones are commonly considered as hazardous locations with higher crash rates and severities as reported in the literature. This study aims to investigate the effectiveness of a variable message signs (VMSs) based system for work zone advance warning area. The proposed system aims at enhancing driver adaptation of the reduced speed limit, encourage early lane changing maneuvers and improve the cooperative driving behavior in the pre-work zone road section. The study was conducted using a driving simulator at the College of Engineering of Qatar University. Seventy volunteers holding a valid Qatari passenger car driving license participated in this study. In the simulator experiment, we have two scenarios (control and treatment). The control scenario was designed based on the Qatar Work Zone Traffic Management Guide (QWZTMG), where the length of the advance warning area is 1000 m. Meanwhile, the treatment scenario contains six newly designed variable message signs where two of them were animation-based. The VMSs were placed at the same locations of the static signs in the control scenario. Both scenarios were tested for two situations. In the first situation, the participants were asked to drive on the left lane while in the second situation, they were instructed to drive on the second lane. The study results showed that the proposed system was effective in motivating drivers to reduce their traveling speed in advance. Compared to the control scenario, drivers’ mean speed was significantly 6.3 and 11.1 kph lower in the VMS scenario in the first and second situations, respectively. Furthermore, the VMS scenario encouraged early lane changing maneuvers. In the VMS scenario, drivers changed their lanes in advance by 150 m compared to the control scenario. In addition, the proposed system was effective in motivating drivers to keep larger headways with the frontal merging vehicle. Taking into account the results from this study, we recommend the proposed VMS based system as a potentially effective treatment to improve traffic safety at work zones.


Author(s):  
Mohsen Kamyab ◽  
Stephen Remias ◽  
Erfan Najmi ◽  
Kerrick Hood ◽  
Mustafa Al-Akshar ◽  
...  

According to the Federal Highway Administration (FHWA), US work zones on freeways account for nearly 24% of nonrecurring freeway delays and 10% of overall congestion. Historically, there have been limited scalable datasets to investigate the specific causes of congestion due to work zones or to improve work zone planning processes to characterize the impact of work zone congestion. In recent years, third-party data vendors have provided scalable speed data from Global Positioning System (GPS) devices and cell phones which can be used to characterize mobility on all roadways. Each work zone has unique characteristics and varying mobility impacts which are predicted during the planning and design phases, but can realistically be quite different from what is ultimately experienced by the traveling public. This paper uses these datasets to introduce a scalable Work Zone Mobility Audit (WZMA) template. Additionally, the paper uses metrics developed for individual work zones to characterize the impact of more than 250 work zones varying in length and duration from Southeast Michigan. The authors make recommendations to work zone engineers on useful data to collect for improving the WZMA. As more systematic work zone data are collected, improved analytical assessment techniques, such as machine learning processes, can be used to identify the factors that will predict future work zone impacts. The paper concludes by demonstrating two machine learning algorithms, Random Forest and XGBoost, which show historical speed variation is a critical component when predicting the mobility impact of work zones.


Author(s):  
Nipjyoti Bharadwaj ◽  
Praveen Edara ◽  
Carlos Sun

Identification of crash risk factors and enhancing safety at work zones is a major priority for transportation agencies. There is a critical need for collecting comprehensive data related to work zone safety. The naturalistic driving study (NDS) data offers a rare opportunity for a first-hand view of crashes and near-crashes (CNC) that occur in and around work zones. NDS includes information related to driver behavior and various non-driving related tasks performed while driving. Thus, the impact of driver behavior on crash risk along with infrastructure and traffic variables can be assessed. This study: (1) investigated risk factors associated with safety critical events occurring in a work zone; (2) developed a binary logistic regression model to estimate crash risk in work zones; and (3) quantified risk for different factors using matched case-control design and odds ratios (OR). The predictive ability of the model was evaluated by developing receiver operating characteristic curves for training and validation datasets. The results indicate that performing a non-driving related secondary task for more than 6 seconds increases the CNC risk by 5.46 times. Driver inattention was found to be the most critical behavioral factor contributing to CNC risk with an odds ratio of 29.06. In addition, traffic conditions corresponding to Level of Service (LOS) D exhibited the highest level of CNC risk in work zones. This study represents one of the first efforts to closely examine work zone events in the Transportation Research Board’s second Strategic Highway Research Program (SHRP 2) NDS data to better understand factors contributing to increased crash risk in work zones.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Rami Harb ◽  
Essam Radwan ◽  
Vinayak V. Dixit

Traffic safety and mobility of roadway work zones have been considered to be one of the major concerns in highway traffic safety and operations in Florida. Dynamic lane merging (DLM) systems—ITS-based lane management technology—were introduced by several states in an attempt to enhance both safety and mobility of roadway work zones. Two forms of lane merging, namely, the early merge and the late merge were designed to advise drivers on definite merging locations. Up to date, there are no studies that contrast both merging schemes under matching work zone settings. This study simulates a two-to-one work zone lane closure configuration under three different Maintenance of Traffic (MOT) plans in VISSIM. The first MOT is the conventional plans used in Florida’s work zones, the second MOT is a simplified dynamic early merging system (early SDLMS), and the third MOT is a simplified dynamic late merging systems (late SDLMSs). Field data was collected to calibrate and validate the simulation models. Simulation results indicated that overall, under different levels of drivers’ compliance rate and different percentages of trucks in the traffic composition, the early SLDMS outperformed the conventional MOT and the late SDLMS in terms of travel times and throughputs.


Author(s):  
King K. Mak ◽  
Roger P. Bligh ◽  
Lewis R. Rhodes

Safety of work zones is a major area of concern since it is not always possible to maintain a level of safety comparable to that of a normal highway not under construction. Proper traffic control is critical to the safety of work zones. However, traffic control devices themselves may pose a safety hazard when impacted by errant vehicles. The impact performance of many work zone traffic control devices is mostly unknown, and little, if any, crash testing has been conducted in accordance with guidelines set forth in NCHRP Report 350. The Texas Department of Transportation (TxDOT) has, in recent years, sponsored a number of studies at the Texas Transportation Institute to assess the impact performance of various work zone traffic control devices, including plastic drums and sign substrates, temporary and portable sign supports, plastic cones, vertical panels, and barricades. The results, findings, conclusions, and recommendations are presented for temporary and portable sign supports, plastic drums, sign substrates for use with plastic drums, traffic cones, and vertical panels, whereas those for barricades are covered elsewhere. Most of the work zone traffic control devices satisfactorily met the evaluation criteria set forth in NCHRP Report 350 and are recommended for field implementation. However, some of the devices failed to perform satisfactorily and are not recommended for field applications. The results from these studies are being incorporated into the TxDOT barricade and construction standard sheets for use in work zones.


2019 ◽  
Vol 11 (2) ◽  
pp. 382
Author(s):  
Chi Zhang ◽  
Jihan Qin ◽  
Min Zhang ◽  
Hong Zhang ◽  
Yudi Hou

In order to create a practical road-resistance function for work zones under different lane occupation conditions, the expected speed of vehicles was calibrated in the work zone simulation model based on measured data, and simulation models were constructed for the closed half lane and the closed inside lane under different rates of trucks. Based on the statistical theory, the influence of significance of traffic volume and truck ratios for road resistance was analyzed, and a suitable truck ratio was found for the work zone. By using the optimal nonlinear fitting theory, the practical road-resistance function for work zones under different lane occupation conditions was constructed. The results showed that the road resistance is significantly affected by the traffic volume and rate of trucks. Under the same truck ratio, the road resistance linearly increases slowly when the traffic volume is less than the critical traffic volume and rapid increases irregularly when it is greater than the critical traffic volume. Under the same traffic load, the road resistance of the work zone increases with the increase in the rate of trucks, and the difference is not obvious when the traffic volume is less than the critical traffic volume, and increases gradually when it is greater than the critical traffic volume. Through the goodness of fit test and the homogeneity of variance test, the road-resistance function constructed in this paper has high goodness of fit. The practical road-resistance functions constructed in this study could be used to guide the diversion of the rebuilt/expanded highway to ensure traffic safety. Further, the study provides a theoretical basis for the construction of intelligent highway work zones.


Sign in / Sign up

Export Citation Format

Share Document