scholarly journals Electronic Structure, Spectroscopic (IR, Raman, UV-Vis, NMR), Optoelectronic, and NLO Properties Investigations of Rubescin E (C31H36O7) Molecule in Gas Phase and Chloroform Solution Using Ab Initio and DFT Methods

2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Richard Arnaud Yossa Kamsi ◽  
Geh Wilson Ejuh ◽  
Fidèle Tchoffo ◽  
Pierre Mkounga ◽  
Jean-Marie Bienvenu Ndjaka

Quantum chemical methods were used to study the electronic structure and some physicochemical properties of Rubescin E molecule. Good agreement with experiment was found for J3H-H coupling constant, IR, 1H NMR, and 13C NMR. The excitation energy and oscillator strength calculated by TD-DFT also complement with experiment. Large values were obtained for dipole moment, polarizability, first static hyperpolarizability, electric susceptibility, refractive index, and dielectric constant, meaning that Rubescin E has strong optical and phonon application and can be a good candidate as NLOs material. The 3D analysis of the title molecule leads us to the conclusion that electron can easily be transferred from furan to tetrahydrofuran ring. The global reactivity descriptors were evaluated. Mulliken, ESP, and NBO charges comparisons were carried out and described.

2018 ◽  
Vol 22 (01n03) ◽  
pp. 25-31 ◽  
Author(s):  
Şaziye Abdurrahmanoğlu ◽  
Mevlüde Canlıca ◽  
John Mack ◽  
Tebello Nyokong

4-(6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy)phthalonitrile has been used to prepare a novel Zn(II) phthalocyanines with four peripheral pyridone substituents. The compound has been characterized by UV-visible absorption, FT-IR and [Formula: see text]H-NMR spectroscopy, elemental analysis and MALDI-TOF mass spectroscopy. The fluorescence, triplet quantum and singlet oxygen quantum yields have been determined and TD-DFT calculations have been used to identify trends in the electronic structure.


2021 ◽  
Author(s):  
Nikola Ristivojević ◽  
◽  
Dušan Dimić ◽  
Marko Đošić ◽  
Stefan Mišić ◽  
...  

Anabolic steroids are a group of commonly counterfeit substances used by individuals who want to gain weight and muscles. Testosterone propionate (TP), an ester analog of testosterone, belongs to this group and its spectroscopic analysis is important especially when it is improperly labeled and misused. In this contribution quantum chemical methods, at the B3LYP/6- 311++G(d,p) level of theory, were applied for the prediction of the vibrational (IR and Raman) and UV-VIS spectra of TP. The applicability of the chosen level of theory was proven based on the comparison between experimental and theoretical bond lengths and angles. The most prominent bands in the IR and Raman spectra were assigned and correlated with the calculated ones. The electronic spectra were also analyzed and the assignments were made based on the Time-Dependent Density Functional Theory (TD-DFT) calculations. The orbitals included in the most intense transitions were visualized and possible solvent effects were discussed. The presented results proved the applicability of the DFT methods for the prediction of spectra that could lead to the counterfeit substances determination.


2015 ◽  
Vol 44 (18) ◽  
pp. 8529-8542 ◽  
Author(s):  
Gunasekaran Velmurugan ◽  
Ponnambalam Venuvanalingam

The electronic structure and spectroscopic properties of a series of rhenium(i) terpyridine complexes were investigated using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5970
Author(s):  
Nabil Al-Zaqri ◽  
Mohammed Suleiman ◽  
Anas Al-Ali ◽  
Khaled Alkanad ◽  
Karthik Kumara ◽  
...  

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


1994 ◽  
Vol 116 (15) ◽  
pp. 6841-6849 ◽  
Author(s):  
Antonio Donaire ◽  
Carol M. Gorst ◽  
Z. H. Zhou ◽  
Michael W. W. Adams ◽  
Gerd N. La Mar

2000 ◽  
Vol 78 (3) ◽  
pp. 383-394
Author(s):  
Frank Bottomley ◽  
Victor Sanchez ◽  
Robert C Thompson ◽  
Olusola O Womiloju ◽  
Zhiqiang Xu

Reduction of [(η-C5Me5)MoCl(O)]2(μ-O) or (η-C5Me5)MoCl2(O) with sodium or magnesium amalgam, magnesium turnings, or tributyltin hydride produced [(η-C5Me5)Mo]4O7, with [(η-C5Me5)Mo(O)(μ-O)]2 as a co-product. [(η-C5Me5)Mo]4O7 was characterized by X-ray diffraction, mass spectrometry, 1H NMR and IR spectroscopies, and magnetism. Crystals of [(η-C5Me5)Mo]4O7 contained a tetrahedral [(η-C5Me5)Mo]4 unit (Mo-Mo = 2.909 (3) Å) with the Mo4O7 core having the structure Mo4(μ2-O(b))3(µ2-O(c))3(µ3-O(a)) (3). Microcrystalline samples of [(η-C5Me5)Mo]4O7 were paramagnetic over the temperature range 2-300 K, with an effective moment of 1.26 μB at 300 K. [(η-C5Me5)Mo]4O7 was also paramagnetic in chloroform solution, over the temperature range 223-298 K, with an effective moment of 1.43 µB at 298 K. The 1H NMR spectrum showed a broad resonance at 16.3 ppm (Δν 1/2 = 113 Hz) and two narrow resonances at 1.89 ppm and 1.69 ppm (Δν 1/2 = 5 Hz). The magnetism and NMR spectra showed that [(η-C5Me5)Mo]4O7 existed in two forms which were in equilibrium in solution. One form was paramagnetic (S = 1), with the Mo4O7 core having the geometry 3, and the other was diamagnetic (S = 0), with the Mo4O7 core having the geometry 4.Key words: cluster, cyclopentadienyl, molybdenum, oxide, paramagnetism.


Sign in / Sign up

Export Citation Format

Share Document