scholarly journals Isorhamnetin Inhibits Liver Fibrosis by Reducing Autophagy and Inhibiting Extracellular Matrix Formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK Pathways

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ning Liu ◽  
Jiao Feng ◽  
Xiya Lu ◽  
Zhilu Yao ◽  
Qing Liu ◽  
...  

Objective. Liver fibrosis is a consequence of wound-healing responses to chronic liver insult and may progress to liver cirrhosis if not controlled. This study investigated the protection against liver fibrosis by isorhamnetin. Methods. Mouse models of hepatic fibrosis were established by intraperitoneal injection of carbon tetrachloride (CCl4) or bile duct ligation (BDL). Isorhamnetin 10 or 30 mg/kg was administered by gavage 5 days per week for 8 weeks in the CCl4 model and for 2 weeks in the BDL model. Protein and mRNA expressions were assayed by western blotting, immunohistochemistry, and quantitative real-time polymerase chain reaction. Results. Isorhamnetin significantly inhibited liver fibrosis in both models, inhibiting hepatic stellate cell (HSC) activation, extracellular matrix (ECM) deposition, and autophagy. The effects were associated with downregulation of transforming growth factor β1 (TGF-β1) mediation of Smad3 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Conclusion. Isorhamnetin protected against liver fibrosis by reducing ECM formation and autophagy via inhibition of TGF-β1-mediated Smad3 and p38 MAPK signaling pathways.

2008 ◽  
Vol 295 (3) ◽  
pp. H1319-H1329 ◽  
Author(s):  
Konstantina Stathopoulou ◽  
Isidoros Beis ◽  
Catherine Gaitanaki

pH is one of the most important physiological parameters, with its changes affecting the function of vital organs like the heart. However, the effects of alkalosis on the regulation of cardiac myocyte function have not been extensively investigated. Therefore, we decided to study whether the mitogen-activated protein kinase (MAPK) signaling pathways [c-Jun NH2-terminal kinases (JNKs), extracellular signal-regulated kinases (ERKs), and p38 MAPK] are activated by alkalosis induced with Tris-Tyrode buffer at two pH values, 8.5 and 9.5, in H9c2 rat cardiac myoblasts. These buffers also induced intracellular alkalinization comparable to that induced by 1 mM NH4Cl. The three MAPKs examined presented differential phosphorylation patterns that depended on the severity and the duration of the stimulus. Inhibition of Na+/H+ exchanger (NHE)1 by its inhibitor HOE-642 prevented alkalinization and partially attenuated the alkalosis (pH 8.5)-induced activation of these kinases. The same stimulus also promoted c-Jun phosphorylation and enhanced the binding at oligonucleotides bearing the activator protein-1 (AP-1) consensus sequence, all in a JNK-dependent manner. Additionally, mitogen- and stress-activated kinase 1 (MSK1) was transiently phosphorylated by alkalosis (pH 8.5), and this was abolished by the selective inhibitors of either p38 MAPK or ERK pathways. JNKs also mediated Bcl-2 phosphorylation in response to incubation with the alkaline medium (pH 8.5), while selective inhibitors of the three MAPKs diminished cell viability under these conditions. All these data suggest that alkalosis activates MAPKs in H9c2 cells and these kinases, in turn, modify proteins that regulate gene transcription and cell survival.


2016 ◽  
Vol 212 (4) ◽  
pp. 425-438 ◽  
Author(s):  
Adi D. Dubash ◽  
Chen Y. Kam ◽  
Brian A. Aguado ◽  
Dipal M. Patel ◽  
Mario Delmar ◽  
...  

Members of the desmosome protein family are integral components of the cardiac area composita, a mixed junctional complex responsible for electromechanical coupling between cardiomyocytes. In this study, we provide evidence that loss of the desmosomal armadillo protein Plakophilin-2 (PKP2) in cardiomyocytes elevates transforming growth factor β1 (TGF-β1) and p38 mitogen-activated protein kinase (MAPK) signaling, which together coordinate a transcriptional program that results in increased expression of profibrotic genes. Importantly, we demonstrate that expression of Desmoplakin (DP) is lost upon PKP2 knockdown and that restoration of DP expression rescues the activation of this TGF-β1/p38 MAPK transcriptional cascade. Tissues from PKP2 heterozygous and DP conditional knockout mouse models also exhibit elevated TGF-β1/p38 MAPK signaling and induction of fibrotic gene expression in vivo. These data therefore identify PKP2 and DP as central players in coordination of desmosome-dependent TGF-β1/p38 MAPK signaling in cardiomyocytes, pathways known to play a role in different types of cardiac disease, such as arrhythmogenic or hypertrophic cardiomyopathy.


2021 ◽  
Vol 83 ◽  
pp. 104547
Author(s):  
Zhenzhen Cheng ◽  
Jingjing Tu ◽  
Hongpan Zhang ◽  
Yi zhang ◽  
Benhong Zhou

Gut ◽  
2021 ◽  
pp. gutjnl-2021-325065
Author(s):  
Chen-Ting Hung ◽  
Tung-Hung Su ◽  
Yen-Ting Chen ◽  
Yueh-Feng Wu ◽  
You-Tzung Chen ◽  
...  

Background and objectivesLiver fibrosis (LF) occurs following chronic liver injuries. Currently, there is no effective therapy for LF. Recently, we identified thioredoxin domain containing 5 (TXNDC5), an ER protein disulfide isomerase (PDI), as a critical mediator of cardiac and lung fibrosis. We aimed to determine if TXNDC5 also contributes to LF and its potential as a therapeutic target for LF.DesignHistological and transcriptome analyses on human cirrhotic livers were performed. Col1a1-GFPTg, Alb-Cre;Rosa26-tdTomato and Tie2-Cre/ERT2;Rosa26-tdTomato mice were used to determine the cell type(s) where TXNDC5 was induced following liver injury. In vitro investigations were conducted in human hepatic stellate cells (HSCs). Col1a2-Cre/ERT2;Txndc5fl/fl (Txndc5cKO) and Alb-Cre;Txndc5fl/fl (Txndc5Hep-cKO) mice were generated to delete TXNDC5 in HSCs and hepatocytes, respectively. Carbon tetrachloride treatment and bile duct ligation surgery were employed to induce liver injury/fibrosis in mice. The extent of LF was quantified using histological, imaging and biochemical analyses.ResultsTXNDC5 was upregulated markedly in human and mouse fibrotic livers, particularly in activated HSC at the fibrotic foci. TXNDC5 was induced by transforming growth factor β1 (TGFβ1) in HSCs and it was both required and sufficient for the activation, proliferation, survival and extracellular matrix production of HSC. Mechanistically, TGFβ1 induces TXNDC5 expression through increased ER stress and ATF6-mediated transcriptional regulation. In addition, TXNDC5 promotes LF by redox-dependent JNK and signal transducer and activator of transcription 3 activation in HSCs through its PDI activity, activating HSCs and making them resistant to apoptosis. HSC-specific deletion of Txndc5 reverted established LF in mice.ConclusionsER protein TXNDC5 promotes LF through redox-dependent HSC activation, proliferation and excessive extracellular matrix production. Targeting TXNDC5, therefore, could be a potential novel therapeutic strategy to ameliorate LF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Sun ◽  
Menghua Xu ◽  
Peijun Zhuang ◽  
Gong Chen ◽  
Kuiran Dong ◽  
...  

AbstractTo investigate the mechanism of 25 hydroxyvitamin D (25(OH)D) deficiency in children with biliary atresia (BA) and its effect on liver fibrosis. The serum vitamin D and 25(OH)D, and expression of 25 hydroxylase (CYP2R1 and CYP27A1) in the liver of BA patients were detected and compared with those in the control group. We investigated the effect of differential expression of CYP2R1 in hepatocytes on the expression of genes related to liver fibrosis in primary hepatic stellate cells (HSCs) of BA and animal models of cholestasis. The ratio of 25(OH)D/vitamin D in the BA group was significantly lower than that in the control group. The mRNA and protein expression of CYP2R1 and CYP27A1 in liver tissue of the BA group was significantly lower than that in the control group. Exogenous active vitamin D (calcitriol) inhibited the proliferation and migration of primary HSCs isolated from BA patients, and reduced the expression of fibrosis-related genes in vitro. Downregulation of expression of CYP2R1 in hepatocytes increased expression of transforming growth factor (TGF)-β1, collagen (Col)-1α1 and tissue inhibitor of metalloproteinase (TIMP)-1, and decreased the expression of matrix metalloproteinase (MMP)-2 in cocultured primary HSCs of BA. Upregulation of expression of CYP2R1 in mice with bile duct ligation significantly increased the level of 25(OH)D, decreased the expression of TGF-β1, Col-1α1 and TIMP-1, and increased the expression of MMP-2. Children with BA have impaired vitamin D activation due to CYP2R1 deficiency. The dysactivation of vitamin D can promote the proliferation and activation of HSCs and participate in the development of hepatic fibrosis in BA.


2020 ◽  
Vol 21 (7) ◽  
pp. 2346 ◽  
Author(s):  
Jicheng Yue ◽  
José M. López

MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.


Sign in / Sign up

Export Citation Format

Share Document