scholarly journals Pinelliae Rhizoma Praeparatum Cum AlumineExtract: Sedative and Hypnotic Effects in Mice and Component Compounds

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Sisi Lin ◽  
Bo Nie ◽  
Ke Song ◽  
Ren Ye ◽  
Zhengzhong Yuan

Pinelliae Rhizoma Praeparatum Cum Alumine(PRPCA) is useful for eliminating dampness and phlegm in clinical settings, targeting the main mechanisms of insomnia as defined in traditional Chinese medicine. However, little is known regarding the sedative and hypnotic effects of PRPCA. In the present study, we examined the sedative effects of PRPCA via a locomotor activity test and aimed to determine the most appropriate concentration of PRPCA for achieving these effects. The strongest sedative effects were observed at a PRPCA concentration of 0.45 g/ml. In addition, we investigated the hypnotic effects of PRPCA and its role in promoting sleep via sleep monitoring and vigilance state analysis. PRPCA increased rapid eye movement (REM) sleep and non-REM (NREM) sleep while decreasing wakefulness. In addition, PRPCA decreased the number of bouts of wakefulness (16–32 s and 32–64 s) and increased the number of bouts of NREM sleep (128–256 s). Furthermore, we identified a total of 32 component compounds via chromatography and mass spectrometry. Hence, the current work provides valuable information regarding the sedative and hypnotic effects of PRPCA and its regulatory mechanisms in promoting sleep.

2021 ◽  
Vol 27 ◽  
Author(s):  
Li-Ping Yu ◽  
Ting-Ting Shi ◽  
Yan-Qin Li ◽  
Jian-Kang Mu ◽  
Ya-Qin Yang ◽  
...  

: Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 233 ◽  
Author(s):  
Huanyu Guan ◽  
Xiaomei Luo ◽  
Xiaoyan Chang ◽  
Meifeng Su ◽  
Zhuangzhuang Li ◽  
...  

Wen Luo Yin (WLY), a well-known traditional Chinese medicine formulation, has been used as a complementary therapy for the treatment of rheumatoid arthritis in clinical settings. However, the chemical constituents of WLY remain unclear. In this study, a high-performance liquid chromatography coupled with tandem mass spectrometry method was established to separate and comprehensively identify the chemical constituents of WLY. The analytes were eluted with a mobile phase of acetonitrile and 0.1% aqueous acetic acid. Mass detection was performed in both positive and negative ion mode. The MS/MS fragmentation pathways were proposed for the identification of the components. A total of 42 compounds including sesquiterpenes, alkaloids, biflavonoids, polyacetylenes, phenylpropanoids and acetylenic phenols were identified unambiguously or tentatively according to their retention times and mass behavior with those of authentic standards or literature data. The identification and structural elucidation of chemical constituents may provide important information for quality control and pharmacological research of WLY.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 151 ◽  
Author(s):  
Alexander Triebl ◽  
Markus Wenk

Over the last two decades, lipids have come to be understood as far more than merely components of cellular membranes and forms of energy storage, and are now also being implicated to play important roles in a variety of diseases, with lipid biomarker research one of the most widespread applications of lipidomic techniques both in research and in clinical settings. Stable isotope labelling has become a staple technique in the analysis of small molecule metabolism and dynamics, as it is the only experimental setup by which biosynthesis, remodelling and degradation of biomolecules can be directly measured. Using state-of-the-art analytical technologies such as chromatography-coupled high resolution tandem mass spectrometry, the stable isotope label can be precisely localized and quantified within the biomolecules. The application of stable isotope labelling to lipidomics is however complicated by the diversity of lipids and the complexity of the necessary data analysis. This article discusses key experimental aspects of stable isotope labelling in the field of mass spectrometry-based lipidomics, summarizes current applications and provides an outlook on future developments and potential.


Sign in / Sign up

Export Citation Format

Share Document