scholarly journals A Research on the Effect of Heterogeneities on Sandstone Matrix Acidizing Performance

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jianye Mou ◽  
Lei Wang ◽  
Shicheng Zhang ◽  
Xinfang Ma ◽  
Boyang Li

Matrix acidizing is one of the common methods to enhance production in sandstone reservoirs. Conventional acidizing designs generally neglected the effect of heterogeneities of mineral and flow field distributions both in areal and vertical directions and assumed that the acid front propagates with a piston-like style. However, sandstone formations inevitably have small-scale heterogeneities of minerals and flow properties that may give rise to acid propagation in a manner much different from what is predicted based on homogeneous assumptions. In this paper, we conduct a research to numerically investigate how the heterogeneities affect acidizing performance under in situ conditions. Firstly, a heterogeneity model is built for mineral and porosity distributions by using the semivariogram model of geological statistics, based on which we generate spatially correlated porosity and mineral distributions. Next, a model of radial acid flooding is developed based on mass balance and the chemical reactions between the acids and minerals occurring during the acidizing process. The model is numerically solved to investigate the permeability response, acid distributions, precipitate distributions, and the effect of the heterogeneities on acidizing. The results show that the heterogeneities both in areal and vertical directions have a significant effect on acidizing. The flow field heterogeneities have a more serious impact than the mineral heterogeneities. In a plane, strong porosity heterogeneity can give rise to acid fingering and even channeling, which make the acid penetration distance longer than the homogeneous cases. The secondary precipitate has a significant effect when fast-reacting mineral content is high. Vertically, several-fold permeability contrast creates the acid break through the high-perm zone leaving the low-perm zone understimulated. Both flow field and mineral heterogeneities make it possible to create high-permeability channels during the acidizing process and to obtain a longer acid penetration distance.

2002 ◽  
Vol 68 (9) ◽  
pp. 4593-4603 ◽  
Author(s):  
Ulrich Nübel ◽  
Mary M. Bateson ◽  
Verona Vandieken ◽  
Andrea Wieland ◽  
Michael Kühl ◽  
...  

ABSTRACT We investigated the diversity, distribution, and phenotypes of uncultivated Chloroflexaceae-related bacteria in photosynthetic microbial mats of an alkaline hot spring (Mushroom Spring, Yellowstone National Park). By applying a directed PCR approach, molecular cloning, and sequence analysis of 16S rRNA genes, an unexpectedly large phylogenetic diversity among these bacteria was detected. Oligonucleotide probes were designed to target 16S rRNAs from organisms affiliated with the genus Chloroflexus or with the type C cluster, a group of previously discovered Chloroflexaceae relatives of this mat community. The application of peroxidase-labeled probes in conjunction with tyramide signal amplification enabled the identification of these organisms within the microbial mats by fluorescence in situ hybridization (FISH) and the investigation of their morphology, abundance, and small-scale distribution. FISH was combined with oxygen microelectrode measurements, microscope spectrometry, and microautoradiography to examine their microenvironment, pigmentation, and carbon source usage. Abundant type C-related, filamentous bacteria were found to flourish within the cyanobacterium-dominated, highly oxygenated top layers and to predominate numerically in deeper orange-colored zones of the investigated microbial mats, correlating with the distribution of bacteriochlorophyll a. Chloroflexus sp. filaments were rare at 60°C but were more abundant at 70°C, where they were confined to the upper millimeter of the mat. Both type C organisms and Chloroflexus spp. were observed to assimilate radiolabeled acetate under in situ conditions.


Author(s):  
Shelby Metoyer ◽  
Mohammad Barzegar ◽  
Darek Bogucki ◽  
Brian K. Haus ◽  
Mingming Shao

AbstractShort range infrared (IR) observations of ocean surface reveal complicated spatially varying and evolving structures. Here we present an approach to use spatially correlated time-series IR images, over a time scale of one tenth of a second, of the water surface to derive underlying surface velocity and turbulence fields. The approach here was tested in a laboratory using grid-generated turbulence and a heater assembly. The technique was compared with in situ measurements to validate our IR derived remote measurements. The IR measured turbulent kinetic energy (TKE) dissipation rates were consistent with in situ measured dissipation using a microstructure profiler (VMP). We used measurements of the gradient of the velocity field to calculate TKE dissipation rates at the surface. Based on theoretical and experimental retrievals and designed an approach for oceanic field IR applications.


NASPA Journal ◽  
1998 ◽  
Vol 35 (4) ◽  
Author(s):  
Jackie Clark ◽  
Joan Hirt

The creation of small communities has been proposed as a way of enhancing the educational experience of students at large institutions. Using data from a survey of students living in large and small residences at a public research university, this study does not support the common assumption that small-scale social environments are more conducive to positive community life than large-scale social environments.


Author(s):  
D.M. Seyedi ◽  
C. Plúa ◽  
M. Vitel ◽  
G. Armand ◽  
J. Rutqvist ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 64
Author(s):  
Maija Nuppunen-Puputti ◽  
Riikka Kietäväinen ◽  
Lotta Purkamo ◽  
Pauliina Rajala ◽  
Merja Itävaara ◽  
...  

Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kylie Owen ◽  
Kentaro Saeki ◽  
Joseph D. Warren ◽  
Alessandro Bocconcelli ◽  
David N. Wiley ◽  
...  

AbstractFinding prey is essential to survival, with marine predators hypothesised to track chemicals such as dimethyl sulfide (DMS) while foraging. Many predators are attracted to artificially released DMS, and laboratory experiments have shown that zooplankton grazing on phytoplankton accelerates DMS release. However, whether natural DMS concentrations are useful for predators and correlated to areas of high prey biomass remains a fundamental knowledge gap. Here, we used concurrent hydroacoustic surveys and in situ DMS measurements to present evidence that zooplankton biomass is spatially correlated to natural DMS concentration in air and seawater. Using agent simulations, we also show that following gradients of DMS would lead zooplankton predators to areas of higher prey biomass than swimming randomly. Further understanding of the conditions and scales over which these gradients occur, and how they are used by predators, is essential to predicting the impact of future changes in the ocean on predator foraging success.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040121 ◽  
Author(s):  
Zhi-Xian Ye ◽  
Qian Chen ◽  
Bing-Hua Li ◽  
Jian-Feng Zou ◽  
Yao Zheng

Vortex identification is important for understanding the physical mechanism of turbulent flow. The common vortex identification techniques based on velocity gradient tensor such as [Formula: see text] criterion will consume a lot of computing resources for processing great quantity of experimental data. To improve the vortex identification efficiency and achieve real-time recognition, we present a novel vortex identification method using segmentation with convolutional neural network (CNN) based on flow field image data, which is named “Butterfly-CNN”. Considering that the view of flow field is small, it is necessary to integrate both the local and global feature maps to achieve higher precision. The architecture consists of an encoded–decoded path, which is similar to [Formula: see text]-net but with different superimposed network part. In the Butterfly-CNN, the cross-expanding paths are designed with the global information to enable precise localization, and the feature maps after each convolution are regarded as the original pictures, then convolute to the size of the last feature map and upsample to the original size again. Finally, the decoded and cross-expanding networks are added up. The Butterfly-CNN can be trained end-to-end from a few images, and it is useful and efficient for vortex identification.


Sign in / Sign up

Export Citation Format

Share Document