scholarly journals Study on Rules of Fault Stress Variation Based on Microseismic Monitoring and Numerical Simulation at the Working Face in the Dongjiahe Coal Mine

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ke Ma ◽  
Fuzhen Yuan ◽  
Duanyang Zhuang ◽  
Quansheng Li ◽  
Zhenwei Wang

Microseismic monitoring technology was used to study the real-time evolution of rock mass damage generated by a working face as it approached a fault in Dongjiahe Coal Mine. The influence of vertical zoning of overlying strata on damage at the fault was analyzed. Numerical simulation using finite element method based on meso-statistical damage theory was used to investigate the nonlinear and nonuniform failure behaviour of the rock mass near the fault. The response of the fault stress to excavation activity and the rule of fault activation were examined. The results show that the fault damage has segmental characteristics. Microcracks are first generated at the fractured zone that is divided into lower, middle, and upper sections, located 30∼70 m, 120∼180 m, and 230∼280 m above the coal seam, respectively. There was also a segmentation phenomenon in the stress response of fault. The risk of fault activation was evaluated by using the ratio of shear stress to the maximum principal stress. When the working face was 260 m and 140 m away from the fault, the activation risk at the upper-middle and lower sections began to increase, respectively. When the fault was within 60 m, the risk of fault activation was highest.

2021 ◽  
Vol 113 ◽  
pp. 103972
Author(s):  
Chao Zhang ◽  
Gaohan Jin ◽  
Chao Liu ◽  
Shugang Li ◽  
Junhua Xue ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2019 ◽  
Vol 16 (5) ◽  
pp. 913-925
Author(s):  
Jianlin Xie ◽  
Jialin Xu

Abstract Existing studies mostly focus on the stress change of coal in front of a goaf, but rarely conduct field monitoring on the internal pressure of a goaf, primarily due to the complex environment and other restrictive conditions of goafs. This paper first used physical simulation to monitor and analyze the internal pressure of goaf and found that goaf pressure presented a stepwise growth with the key stratum breaking. In addition, field measurements were conducted to monitor the goaf pressures of two different working faces. Goaf pressures both presented linear growth with the advance of the working face. According to comparative analysis, there were some differences between the two monitoring methods in terms of the corresponding relationship. This reflects that in the actual rock mass, after the breaking of a key stratum, the loads of the strata under its control are not transferred to the goaf instantaneously and load transfer characteristics are probably related to roof separation distribution characteristics of overlying strata, the bulking characteristics of caved rock mass, lateral stress limitation and other factors. The results of this study will offer some guidance for studies on the movement laws of overlying strata and the load transfer of overlying strata above goafs.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chuanqi Zhu ◽  
Lei Wang ◽  
Xiangang Han

In the loading and failure process of the coal and rock medium, with the increasing of the damaging and failure extent, the medium state gradually changed from the continuous, the quasicontinuous, and the discontinuous to the loose successively. To evaluate the damaging failure extent of the coal and rock mass and distinguish the state of the coal and rock mass medium, first, the medium state index was defined based on the acoustic wave propagation model. Then, based on the coal mass in the working face 8512 in the Chenjiagou Coal Mine in China, the acoustic character and the mechanical character experiments were conducted. Through experiments, the variation law of the ultrasonic wave velocity and the medium state index of the coal mass with the strain under the compressive state were acquired; with the increasing of the strain, the medium state indexes successively experienced the variation process including stabilising around 0, slow increasing, dramatic increasing, and stabilising around 1. Then, based on the variation law of the medium state index, the coal and rock mass medium state judgement model was constructed. This model was applied to judge the coal mass medium state. After it, the mudstones in the roof of the same working face were regarded as the research object, the mudstone medium state was divided into 4 types according to the medium state judgement model, namely, continuous, quasicontinuous, discontinuous, and bulk solid, and the mudstone failure state was basically consistent with the continuous, quasicontinuous, discontinuous, and bulk solid state. The adaptability and rationality of the judgement model was verified. Finally, engineering application of the judgement model was conducted. The distribution law of the top coal with different medium state was acquired. In the top coal that was 186 m away from the working face, it belonged to the continuous medium state. As for the top coal that was 6 m to 186 m far away from the working face, it was under the quasicontinuous medium state. For the top coal that was 3 m to 6 m far away from the working face, it was under the discontinuous medium state. For the top coal that was less than 3 m far away from the working face and behind the working face, it belonged to the bulk solid medium state. The state judgement model can successfully distinguish the medium state of the coal seam and mudstones in the roof in the working face 8512. This provided a new approach to evaluate the damaging failure extent of the coal and rock medium in the Chenjiagou Coal Mine.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yalong Li ◽  
Mohanad Ahmed Almalki ◽  
Cheng Li

Abstract For the comprehensive mechanised coal mining technology, the support design of the main withdrawal passage in the working face is an important link to achieve high yield and efficiency. Due to the impact of mining, the roof movement of the withdrawal passage is obvious, the displacement of the coal body will increase significantly, and it is easy to cause roof caving and serious lamination problems, and even lead to collapse accidents, which will affect the normal production of the mine. In this paper, the mining pressure development law of the main withdrawal passage support under the influence of dynamic pressure is designed, the most favourable roof failure form of the withdrawal passage is determined, and the action mechanism and applicable conditions of different mining pressure control measures are studied. The pressure appearance and stress distribution in the final mining stage of fully mechanised coal face are studied by numerical simulation. The deformation and failure characteristics and control measures of roof overburden in the last mining stage of fully mechanised coal face are analysed theoretically. Due to the fact that periodic pressure should be avoided as far as possible after the full-mechanised mining face is connected with the retracement passage, some auxiliary measures such as mining height control and forced roof blasting are put forward on this basis. The relative parameters of the main supporting forms are calculated. The main retracement of a fully mechanised working face in a coal mine channel is put forward to spread the surrounding rock grouting reinforcement, reinforcing roof, and help support and improve the bolt anchoring force, the main design retracement retracement channels in the channel near the return air along the trough for supporting reinforcing surrounding rock control optimisation measures, such as through the numerical simulation analysis, the optimisation measures for coal mine fully mechanised working face of surrounding rock is feasible. Numerical simulation results also show that the surrounding rock control of fully mechanised working face of coal mine design improvements, its main retreat channel under the roof subsidence, cribbing shrank significantly lower, and closer, to better control the deformation of surrounding rock, achieved significant effect, to ensure the safety of coal mine main retracement channel of fully mechanised working face support.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bing-Jun Sun ◽  
Xin-Zhu Hua ◽  
Yan Zhang ◽  
Jiadi Yin ◽  
Kai He ◽  
...  

The mechanical model of the basic roof fracture structure is established on the basis of key block theory to study the roof breaking mechanism of gob-side entry retaining under roof cutting and pressure relief, and the analytical formula of roof support resistance is derived when the key block of the basic roof is stable. The influence of roof cutting angle and cutting height on roof support resistance is also analyzed. Determining the cutting seam parameters of the retained roadway roof is necessary to identify the support resistance of the roadway roof due to the correlation between the roof cutting parameters and the support resistance. Taking the II 632 haulage drift of the Hengyuan coal mine as the engineering background, FLAC3D numerical simulation is used in this paper to analyze the influence of different roof cutting angles and cutting heights on the surrounding rock structure evolution of retained roadways. Results show that the roof cutting angle and cutting height respond to the support resistance of the retained roadway roof, and the support resistance required by the roof increases with the roof cutting angle and cutting height. This condition ensures that the side roof of the gob can be cut off smoothly, and the support resistance required by the roof of retained roadways is within a reasonable range. Through theoretical and numerical simulation analysis, the reasonable roof cutting height of II 632 haulage drift is 8 m and the roof cutting angle is 15°. The theoretical analysis and numerical simulation results reveal that the required support resistance to maintain the stability of the roadway roof is 0.38 MPa. The supporting scheme of the roof of the II 632 haulage drift in the Hengyuan coal mine is then designed. Finally, the field industrial test is used for verification. The borehole imaging results show that the overall line of the retained roadway roof is small based on the description of field monitoring results. The deformation of the surrounding rock surface of the retained roadway is less than 100 mm, and the roadway is 40 m from the lagging working face. The deformation rate of surrounding rock decreases with the increase in distance from the working face. The integrity of the retained roadway roof is good, and the deformation of the surrounding rock is effectively controlled.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Junmeng Li ◽  
Yanli Huang ◽  
Jixiong Zhang ◽  
Meng Li ◽  
Ming Qiao ◽  
...  

In order to analyze the impact of compound breakage of key strata on overlying strata movement and strata pressure behavior during the fully mechanized caving mining in shallow and extremely thick seams, this paper took the 1322 fully mechanized caving face in Jindi Coal Mine in Xing County as the engineering background. Under the special mining and geological condition mentioned above, UDEC numerical simulation software was applied to research the engineering problems, and results of numerical simulation were verified through the in-site measurement. The research results showed that during the fully mechanized caving mining in shallow and extremely thick seams, the inferior key strata affected by mining movement behaved in the mode of sliding instability and could not form the stable structure of the voussoir beam after breaking and caving. In addition, the main key strata behaved in the mode of rotary instability, and the caving rocks behind the goaf were gradually compacted because of the periodic instability of the main key strata. With the continuous advance of the working face, the abutment pressure of the working face was affected by the compound breakage and periodic instability of both the inferior key strata and the main key strata, and the peaks of the abutment pressure presented small-big-small-big periodical change characteristics. Meanwhile, the risk of rib spalling ahead of the working face presented different levels of acute or slowing trends. The actual measurement results of ground pressure in the working face showed that, in the working process, the first weighting interval of the inferior key strata was about 51 m and its average periodic weighting interval was about 12.6 m, both of which were basically consistent with the results of numerical simulation. The research has great significance in providing theoretical guidance and practical experience for predicting and controlling the ground pressure under the similar mining and geological conditions.


2015 ◽  
Vol 1094 ◽  
pp. 410-414
Author(s):  
Quan Ming Liu

Using numerical simulation method,fully mechanized top coal’s caving property of Tang gong ta coal mine was studied.The results show at primary mining period of fully mechanized working face, there were stress concentration regions at the front and rear of coal wall,but it was not distinct in the front and top coal’s caving property was not ideal.When it advanced to 84m of the working face,there would be obvious peak stress at the front and rear of coal wall. It accelerated top coal’s caving.When it advanced to 140m of the working face,top coal was caved with coal mining.Finally it was proved on the scene. The results of the study in fully mechanized mining’s safety and efficiency has some guiding role.


Sign in / Sign up

Export Citation Format

Share Document