scholarly journals Long Noncoding RNA LOC100129940-N Is Upregulated in Papillary Thyroid Cancer and Promotes the Invasion and Progression

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Manting Choy ◽  
Yan Guo ◽  
Hai Li ◽  
Guohong Wei ◽  
Runyi Ye ◽  
...  

Thyroid cancer is the most common endocrine malignancy, and its incidence has increased rapidly in recent decades worldwide. Papillary thyroid cancer (PTC) is the most common type of all thyroid cancers. The molecular mechanisms underlying the disease still need to be further investigated. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs (ncRNAs) longer than 200 nucleotides, are aberrantly expressed in malignant diseases, including PTC. Here, we identified a novel isoform of LOC100129940 and designated it as LOC100129940-N. We demonstrated that the expression level of LOC100129940-N was elevated in PTC, indicating that LOC100129940-N may be involved in PTC development and progression. Moreover, our results showed that overexpression of LOC100129940-N promoted, whereas silencing of LOC100129940-N suppressed, PTC cell proliferation, invasion, and migration. Mechanistically, LOC100129940-N played an important role in activating Wnt/β-catenin signaling and upregulating downstream target genes. Taken together, we demonstrate that LOC100129940-N promotes the activation of Wnt/β-catenin signaling, which in turn regulates the downstream target genes, thereby enhancing invasion and progression of PTC.

Oncotarget ◽  
2017 ◽  
Vol 8 (66) ◽  
pp. 110552-110565 ◽  
Author(s):  
Honggang Sun ◽  
Liqin He ◽  
Lan Ma ◽  
Tao Lu ◽  
Jianguo Wei ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sunwang Xu ◽  
Caiqin Mo ◽  
Junyu Lin ◽  
Yixing Yan ◽  
Xiaoyu Liu ◽  
...  

AbstractPapillary thyroid cancer (PTC) is the main histological type of thyroid cancer and accounts for almost all increased cases worldwide. Patients with PTC exhibit a favorable prognosis, but the fact that PTC is often accompanied by a high prevalence of lymph node metastasis (LNM) means that the overall recurrence-free survival rate in PTC patients is relatively low. Herein, we identified that ID3 expression is subdued in PTC tissues and closely associated with LNM and a poor disease-free survival outcome in PTC patients. The main contributor to this gene repression is the hypermethylation of the CpG island at the promoter of ID3. Besides, we uncovered that a loss of ID3 promotes invasion and migration of PTC cells, while an ectopic overexpression of ID3 inhibits invasion and migration. Mechanistically, ID3 exhibits tumor suppressor functions in PTC cells by interacting with E47 to form heterodimers that prevent E47 binding to CDH1 promoter and maintaining CDH1 transcription and epithelial phenotype in PTC cells. Taken together, our study demonstrates that ID3 plays a tumor suppressor role in PTC and impedes metastasis by inhibiting E47-mediated epithelial to mesenchymal transition.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Wencong Sun ◽  
Detao Yin

AbstractLong noncoding RNAs (lncRNAs) play an essential role in the progression of papillary thyroid cancer (PTC). However, the expression and function of lncRNA cancer susceptibility candidate 7 (CASC7) in PTC remain unknown. The purpose of this study was to investigate the role and molecular mechanism of CASC7 in regulating PTC cell behavior. The expression of CASC7, miR-34a-5p, and tumor protein P73 (TP73) was determined by qRT-PCR and western blot. Cell proliferation was examined by MTT assay. Cell apoptosis was assessed by flow cytometry following Annexin V and PI staining. Cell migration was determined by Transwell migration assay. The interaction between miR-34a-5p and CASC7 or TP73 was examined by luciferase reporter assay. CASC7 and TP73 expression were significantly lower, whereas miR-34a-5p expression was higher in PTC tissues than the adjacent normal tissues. Furthermore, CASC7 overexpression inhibited cell proliferation and migration, whereas facilitated cell apoptosis in human PTC cell lines (K1 and TPC-1). Mechanistically, CASC7 acted as a sponge of miR-34a-5p to upregulate TP73 expression. Moreover, miR-34a-5p mimic transfection could abate the CASC7-regulated PTC cell proliferation, migration, and apoptosis. Collectively, CASC7 inhibited the proliferation and migration of PTC cells by sponging miR-34a-5p to upregulate TP73 expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun-ya Han ◽  
Si Guo ◽  
Na Wei ◽  
Rui Xue ◽  
Wencai Li ◽  
...  

Purpose. The incidence of papillary thyroid cancer (PTC) is increasing, and traditional diagnostic methods are unsatisfactory. Therefore, identifying novel prognostic markers is very important. ciRS-7 has been found to play an important role in many cancers, but its role in PTC has not been reported. This study was performed to evaluate the biological role and mechanism of ciRS-7 in PTC. Material and Methods. The expression of ciRS-7 in PTC tissues and the matched adjacent tissues was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The PTC cell lines (TPC-1 and BCPAP) were used to evaluate the role of ciRS-7. ciRS-7-siRNA and overexpression plasmid were constructed and transfected into PTC cells. A CCK-8 assay and colony formation assay were performed to explore the effects of ciRS-7 on cell proliferation. Annexin V/PI staining and FACS detection were used to detect cell apoptosis. Wound healing assay was performed to detect cell migration. A transwell assay was conducted to explore the effects of ciRS-7 on invasion and migration. Western blotting was performed to evaluate protein expression. The luciferase reporter system was used to determine the underlying mechanism of miR-7. Result. ciRS-7 was highly expressed in PTC tissues and cell lines compared with the corresponding controls. In vitro study showed that ciRS-7 silencing suppressed proliferation, migration, and invasion of TPC-1 and BCPAP. Mechanistically, the effects of ciRS-7 on invasion and migration may be related to epithelial-mesenchymal transition (EMT). ciRS-7 silencing could attenuate effects on PTC cells induced by miR-7 knockdown. Epidermal growth factor receptor (EGFR), which was demonstrated to be a target of miR-7, decreased significantly in ciRS-7-siRNA PTC cells. Overexpression of EGFR also attenuated effects of PTC cells induced by silencing ciRS-7. Conclusion. ciRS-7 was significantly upregulated in PTC tissues, and it promoted the progression of PTC by regulating the miR-7/EGFR axis. ciRS-7 is a promising prognostic biomarker and therapeutic target in PTC.


Author(s):  
Litao Han ◽  
Hejing Lai ◽  
Yichen Yang ◽  
Jiaqian Hu ◽  
Zhe Li ◽  
...  

Abstract Background tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. Methods Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. Results Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. Conclusions Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Luyao Wu ◽  
Yu Ding ◽  
Houchao Tong ◽  
Xi Zhuang ◽  
Jingsheng Cai ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in various cancers. However, the functional roles of most lncRNA in papillary thyroid cancer (PTC) are not detailly understood. This study aims to investigate the biological function and molecular mechanism of lncRNA Fer-1 like family member 4 (FER1L4) in PTC. Methods The expression of FER1L4 in PTC was determined via operating quantitative real-time PCR assays. Meanwhile, the clinical significance of FER1L4 in patients with PTC was described. The biological functions of FER1L4 on PTC cells were evaluated by gain and loss of function experiments. Moreover, animal experiments were performed to reveal the effect on tumor growth. Subcellular distribution of FER1L4 was determined by fluorescence in situ hybridization and subcellular localization assays. Luciferase reporter assay and RNA immunoprecipitation assay were applied to define the relationship between FER1L4, miR-612, and Cadherin 4 (CDH4). Results Upregulated expression of FER1L4 in PTC tissues was positively correlated with lymph node metastasis (P = 0.020), extrathyroidal extension (P = 0.013) and advanced TNM stages (P = 0.013). In addition, knockdown of FER1L4 suppressed PTC cell proliferation, migration, and invasion, whereas ectopic expression of FER1L4 inversely promoted these processes. Mechanistically, FER1L4 could competitively bind with miR-612 to prevent the degradation of its target gene CDH4. This condition was further confirmed in the rescue assays. Conclusions This study first demonstrates FER1L4 plays an oncogenic role in PTC via a FER1L4-miR-612-CDH4 axis and may provide new therapeutic and diagnostic targets for PTC.


Sign in / Sign up

Export Citation Format

Share Document