scholarly journals Identification of Potential Biomarkers and Biological Pathways in Juvenile Dermatomyositis Based on miRNA-mRNA Network

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Cheng Qiu ◽  
Qi-Sheng Su ◽  
Shang-Yong Zhu ◽  
Ruo-Chuan Liu

Objective. The aim of this study is to explore the potential pathogenesis of juvenile dermatomyositis by bioinformatics analysis of gene chips, which would screen the hub genes, identify potential biomarkers, and reveal the development mechanism of juvenile dermatomyositis. Material and Methods. We retrieved juvenile dermatomyositis’s original expression microarray data of message RNAs (mRNAs) and microRNAs (miRNAs) from NCBI’s Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/); through the R package of limma in Bioconductor, we can screen the differentially expressed miRNAs and mRNAs, and then we further analyzed the predicted target genes by the methods such as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and miRNA-mRNA regulatory network construction and protein-protein interaction (PPI) network using Cytoscape 3.6.1. Results. Compared with normal juvenile skin tissues, 6 upregulated microRNAs and 5 downregulated microRNAs were identified from 166 downregulated microRNAs and 58 upregulated microRNAs in juvenile dermatomyositis tissues. The enrichment pathways of differentially expressed microRNAs include cell adhesion molecules (CAMs), autoimmune thyroid disease, Type I diabetes mellitus, antigen and presentation, viral myocardium, graft-versus-host disease, and Kaposi sarcoma-associated herpes virus infection. By screening of microRNA-messenger RNA regulatory network and construction of PPI network map, three target miRNAs were identified, namely, miR-193b, miR-199b-5p, and miR-665. Conclusion. We identified mir-193b, mir-199b-5p, and mir-6653 target miRNAs by exploring the miRNA-mRNA regulation network mechanism related to the pathogenesis of juvenile dermatomyositis, which will be of great significance for further study on the pathogenesis and targeted therapy of juvenile dermatomyositis.

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3212
Author(s):  
Feng Cheng ◽  
Jing Liang ◽  
Liyu Yang ◽  
Ganqiu Lan ◽  
Lixian Wang ◽  
...  

Intramuscular fat (IMF) content is a complex trait that affects meat quality and determines pork quality. In order to explore the potential mechanisms that affect the intramuscular fat content of pigs, a Large white × Min pigs F2 resource populations were constructed, then whole-transcriptome profile analysis was carried out for five low-IMF and five high-IMF F2 individuals. In total, 218 messenger RNA (mRNAs), 213 long non-coding RNAs (lncRNAs), 18 microRNAs (miRNAs), and 59 circular RNAs (circRNAs) were found to be differentially expressed in the longissimus dorsi muscle. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these differentially expressed (DE) genes or potential target genes (PTGs) of DE regulatory RNAs (lncRNAs, miRNAs, and circRNAs) are mainly involved in cell differentiation, fatty acid synthesis, system development, muscle fiber development, and regulating lipid metabolism. In total, 274 PTGs were found to be differentially expressed between low- and high-IMF pigs, which indicated that some DE regulatory RNAs may contribute to the deposition/metabolism of IMF by regulating their PTGs. In addition, we analyzed the quantitative trait loci (QTLs) of DE RNAs co-located in high- and low-IMF groups. A total of 97 DE regulatory RNAs could be found located in the QTLs related to IMF. Co-expression networks among different types of RNA and competing endogenous RNA (ceRNA) regulatory networks were also constructed, and some genes involved in type I diabetes mellitus were found to play an important role in the complex molecular process of intramuscular fat deposition. This study identified and analyzed some differential RNAs, regulatory RNAs, and PTGs related to IMF, and provided new insights into the study of IMF formation at the level of the genome-wide landscape.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractSporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. Pathway and GO enrichment analyses of DEGs were performed. Furthermore, the protein-protein interaction (PPI) network was predicted using the IntAct Molecular Interaction Database and visualized with Cytoscape software. In addition, hub genes and important modules were selected based on the network. Finally, we constructed target genes - miRNA regulatory network and target genes - TF regulatory network. Hub genes were validated. A total of 891 DEGs 448 of these DEGs presented significant up regulated, and the remaining 443 down regulated were obtained. Pathway enrichment analysis indicated that up regulated genes were mainly linked with glutamine degradation/glutamate biosynthesis, while the down regulated genes were involved in melatonin degradation. GO enrichment analyses indicated that up regulated genes were mainly linked with chemical synaptic transmission, while the down regulated genes were involved in regulation of immune system process. hub and target genes were selected from the PPI network, modules, and target genes - miRNA regulatory network and target genes - TF regulatory network namely YWHAZ, GABARAPL1, EZR, CEBPA, HSPB8, TUBB2A and CDK14. The current study sheds light on the molecular mechanisms of sCJD and may provide molecular targets and diagnostic biomarkers for sCJD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Ma ◽  
Huan Gui ◽  
Yunjia Tang ◽  
Yueyue Ding ◽  
Guanghui Qian ◽  
...  

Kawasaki disease (KD) causes acute systemic vasculitis and has unknown etiology. Since the acute stage of KD is the most relevant, the aim of the present study was to identify hub genes in acute KD by bioinformatics analysis. We also aimed at constructing microRNA (miRNA)–messenger RNA (mRNA) regulatory networks associated with acute KD based on previously identified differentially expressed miRNAs (DE-miRNAs). DE-mRNAs in acute KD patients were screened using the mRNA expression profile data of GSE18606 from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DE-mRNAs were performed with the DAVID database. Target genes of DE-miRNAs were predicted using the miRWalk database and their intersection with DE-mRNAs was obtained. From a protein–protein interaction (PPI) network established by the STRING database, Cytoscape software identified hub genes with the two topological analysis methods maximal clique centrality and Degree algorithm to construct a miRNA-hub gene network. A total of 1,063 DE-mRNAs were identified between acute KD and healthy individuals, 472 upregulated and 591 downregulated. The constructed PPI network with these DE-mRNAs identified 38 hub genes mostly enriched in pathways related to systemic lupus erythematosus, alcoholism, viral carcinogenesis, osteoclast differentiation, adipocytokine signaling pathway and tumor necrosis factor signaling pathway. Target genes were predicted for the up-regulated and down-regulated DE-miRNAs, 10,203, and 5,310, respectively. Subsequently, 355, and 130 overlapping target DE-mRNAs were obtained for upregulated and downregulated DE-miRNAs, respectively. PPI networks with these target DE-mRNAs produced 15 hub genes, six down-regulated and nine upregulated hub genes. Among these, ten genes (ATM, MDC1, CD59, CD177, TRPM2, FCAR, TSPAN14, LILRB2, SIRPA, and STAT3) were identified as hub genes in the PPI network of DE-mRNAs. Finally, we constructed the regulatory network of DE-miRNAs and hub genes, which suggested potential modulation of most hub genes by hsa-miR-4443 and hsa-miR-6510-5p. SP1 was predicted to potentially regulate most of DE-miRNAs. In conclusion, several hub genes are associated with acute KD. An miRNA–mRNA regulatory network potentially relevant for acute KD pathogenesis provides new insights into the underlying molecular mechanisms of acute KD. The latter may contribute to the diagnosis and treatment of acute KD.


2020 ◽  
Author(s):  
Sheng Chang ◽  
Yang Cao

Abstract Background: Osteosarcoma (osteogenic sarcoma, OS) is a primary cause of morbidity and mortality and is associated with poor prognosis in the field of orthopedic. Globally, rates of OS are highest among 15 to 25-year-old adolescent. However, the mechanism of gene regulation and signaling pathway is unknown. Material and Methods: GSE9508, including 34 OS samples and 5 non-malignant bone samples, was gained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were picked out by GEO2R online R soft tool. Furthermore, the protein-protein interaction (PPI) network between the DEGs was molded utilizing STRING online software. Afterward, PPI network of DEGs was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were carried out on DAVID online tool and visualized via cytoscape software. Subsequently, module analysis of PPI was performed by using MCODE app. What’s more, prognosis-related genes were screened by using online databases including GEPIA, UALCAN and cBioPortal databases. Results: Totally, 671 DEGs were picked out, including 501 up-regulated genes and 170 down-regulated genes. Moreover, 22 hub genes were identified to be significantly expressed in PPI network (16 up-regulated and 6 down-regulated). We found that spliceosome signaling pathway may provide a potential target in OS. Furthermore, on the basis of common crucial pathway, PRPF38A and SNRPC were closely associated with spliceosome. Conclusion: This study showed that SNRPC and PRPF38A are potential biomarkers candidates for osteosarcoma.


2020 ◽  
Author(s):  
Jinhui Liu ◽  
Rui Sun ◽  
Sipei Nie ◽  
Jing Yang ◽  
Siyue Li ◽  
...  

Abstract Background: Many studies have well supported the close relationship between miRNA and endometrial cancer (EC). This bioinformatic study, compared with other similar studies, confirmed a new miRNA-mRNA regulatory network to investigate the miRNA-mRNA regulatory network and the prognostic biomarkers in EC. Methods: We downloaded RNA-seq and miRNA-seq data of endometrial cancer from the TCGA database, and then we used EdegR package to screen differentially expressed miRNAs and mRNAs (DE-miRNAs and DE-mRNAs). The differentially expressed genes (DEGs) were identified and their functions were predicted using the functional and pathway enrichment analysis. Protein–protein interaction (PPI) network was established using STRING database, and the hub genes were verified by Gene Expression Profiling Interactive Analysis (GEPIA). Then, we constructed a regulatory network of EC-associated miRNAs and hub genes by Cytoscape, and determined the expression of unexplored miRNAs in EC tissues and normal adjacent tissues by quantitative Real-Time PCR (qRT-PCR). A prognostic signature model and a predictive nomogram were constructed. Finally, we explored the association between the prognostic model and the immune cell infiltration. Results: 11531 DE-mRNAs and 236 DE-miRNAs, as well as 275 and 118 candidate DEGs for upregulated and downregulated DE-miRNAs were screened out. These DEGs were significantly concentrated in FOXO signaling pathway, cell cycle and Focal adhesion. Among the 20 hub genes identified, 17 exhibited significantly different expression compared with normal tissues. The miRNA-mRNA network included 5 downregulated and 13 upregulated DE-miRNAs . qRT-PCR proved that the expression levels of miRNA-18a-5p, miRNA-18b-5p, miRNA-449c-5p and miRNA-1224-5p and their target genes, NR3C1, CTGF, MYC, and TNS1 were consistent with our predictions. Univariate and multivariate Cox proportional hazards regression analyses of the hub genes revealed that NR3C1, EZH2, and GATA4 showed a significant prognostic value. We identified the three-gene signature as an independent prognostic indicator for EC ( p =0.022,HR=1.321, 95% CI: 1.041-1.675) and these genes were closely related to eight types of immune infiltration cells. Conclusion: Our study revealed the mechanisms of the carcinogenesis and progression of EC.


Lupus ◽  
2020 ◽  
Vol 29 (8) ◽  
pp. 854-861
Author(s):  
Jianbo Song ◽  
Liqin Zhao ◽  
Yuanping Li

Objective Lupus nephritis (LN) is one of the serious complications of systemic lupus erythematosus. The aim of this study was to identify core genes and pathways involved in the pathogenesis of LN. Methods We screened differentially expressed genes (DEGs) in LN patients using mRNA expression profile data from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DEGs was performed utilizing the Database for annotation, Visualization and Integrated Discovery. Target genes with differentially expressed miRNAs (DEMIs) were predicted using the miRTarBase database, and the intersection between these target genes and DEGs was selected to be studied further. Results In total, 107 common DEGs (CDEGs) were identified from the Tub_LN group and Glom_LN group, and 66 DEMIs were identified. Fifty-three hub genes and two significant modules were identified from the protein–protein interaction (PPI) network, and a miRNA–mRNA network was constructed. The CDEGs, module genes in the PPI network and genes intersecting with the CDEGs and target genes of DEMIs were all associated with the PI3K-Akt signalling pathway. Conclusion In summary, this study reveals some crucial genes and pathways potentially involving in the pathogenesis of LN. These findings provide a new insight for the research and treatment of LN.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yawei Hou ◽  
Yameng Li ◽  
Yichuan Wang ◽  
Wenpu Li ◽  
Zhenwei Xiao

Background. MicroRNAs (miRNAs) are confirmed to participate in occurrence, development, and prevention of membranous nephropathy (MN), but their mechanism of action is unclear. Objective. With the GEO database and the use of bioinformatics, miRNA-mRNA regulatory network genes relevant to MN were explored and their potential mechanism of action was explained. Methods. The MN-related miRNA chip data set (GSE51674) and mRNA chip data set (GSE108109) were downloaded from the GEO database. Differential analysis was performed using the GEO2R online tool. TargetScan, miRTarBase, and StarBase databases were used to predict potential downstream target genes regulated by differentially expressed miRNAs, and the intersection with differential genes were taken to obtain candidate target genes. According to the regulatory relationship between miRNA and mRNA, the miRNA-mRNA relationship pair was clarified and Cytoscape was used to construct a miRNA-mRNA regulatory network. WebGestalt was used to conduct enrichment analysis of the biological process of differential mRNAs in the regulatory network; FunRich analyzes the differential mRNA pathways in the miRNA-mRNA regulatory network. And the STRING database was used to construct a PPI network for candidate target genes, and Cytoscape visually analyzes the PPI network. Results. Experiments were conducted to screen differentially expressed miRNAs and mRNAs. There were 30 differentially expressed miRNAs, including 22 upregulated and 8 downregulated; and 1267 differentially expressed mRNAs, including 536 upregulated and 731 downregulated. Using TargetScan, miRTarBase, and StarBase databases to predict the downstream targets of differentially expressed miRNAs, 2957 downstream target genes coexisting in the 3 databases were predicted to intersect with differentially expressed mRNAs to obtain 175 candidate target genes. Finally, 36 miRNA-mRNA relationship pairs comprising 10 differentially expressed miRNAs and 27 differentially expressed mRNAs were screened out, and the regulatory network was constructed. Further analysis revealed that the miRNA regulatory network genes may be involved in the development of membranous nephropathy by mTOR, PDGFR-β, LKB1, and VEGF/VEGFR signaling pathways. Conclusion. The miRNA regulatory network genes may participate in the regulation of podocyte autophagy, lipid metabolism, and renal fibrosis through mTOR, PDGFR-β, LKB1, and VEGF/VEGFR signaling pathways, thereby affecting the occurrence and development of membranous nephropathy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guangyu Gao ◽  
Zhen Yao ◽  
Jiaofeng Shen ◽  
Yulong Liu

Dabrafenib resistance is a significant problem in melanoma, and its underlying molecular mechanism is still unclear. The purpose of this study is to research the molecular mechanism of drug resistance of dabrafenib and to explore the key genes and pathways that mediate drug resistance in melanoma. GSE117666 was downloaded from the Gene Expression Omnibus (GEO) database and 492 melanoma statistics were also downloaded from The Cancer Genome Atlas (TCGA) database. Besides, differentially expressed miRNAs (DEMs) were identified by taking advantage of the R software and GEO2R. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and FunRich was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify potential pathways and functional annotations linked with melanoma chemoresistance. 9 DEMs and 872 mRNAs were selected after filtering. Then, target genes were uploaded to Metascape to construct protein-protein interaction (PPI) network. Also, 6 hub mRNAs were screened after performing the PPI network. Furthermore, a total of 4 out of 9 miRNAs had an obvious association with the survival rate ( P < 0.05 ) and showed a good power of risk prediction model of over survival. The present research may provide a deeper understanding of regulatory genes of dabrafenib resistance in melanoma.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shengqing Hu ◽  
Yunfei Liao ◽  
Juan Zheng ◽  
Luoning Gou ◽  
Anita Regmi ◽  
...  

To better understand the molecular mechanism for the pathogenesis of follicular thyroid carcinoma (FTC), this study aimed at identifying key miRNAs and their target genes associated with FTC, as well as analyzing their interactions. Based on the gene microarray data GSE82208 and microRNA dataset GSE62054, the differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained using R and SAM software. The common DEMs from R and SAM were fed to three different bioinformatic tools, TargetScan, miRDB, and miRTarBase, respectively, to predict their biological targets. With DEGs intersected with target genes of DEMs, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed through the DAVID database. Then a protein-protein interaction (PPI) network was constructed by STRING. Finally, the module analysis for PPI network was performed by MCODE and BiNGO. A total of nine DEMs were identified, and their function might work through regulating hub genes in the PPI network especially KIT and EGFR. KEGG analysis showed that intersection genes were enriched in the PI3K-Akt signaling pathway and microRNAs in cancer. In conclusion, the study of miRNA-mRNA network would offer molecular support for differential diagnosis between malignant FTC and benign FTA, providing new insights into the potential targets for follicular thyroid carcinoma diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document