scholarly journals Investigation of Var Compensation Schemes in Unbalanced Distribution Systems

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yinuo Huang ◽  
Licheng Wang ◽  
Kai Wang

Distributed rooftop photovoltaic (PV) generators prospered distributed generation (DG) in recent years. Certain randomness of rooftop PV connection may lead to significant PV power imbalance across three phases, especially in low-voltage distribution systems. Due to interphase line coupling, traditional Var compensation methods which typically have competent voltage regulation performance may become less effective in such PV imbalance scenarios. In this paper, the limitation of traditional Var compensation methods in voltage regulation with unbalanced PV power integration is demonstrated and comprehensively analyzed. After describing the voltage regulation challenge, based on the voltage sensitivity analysis, it is revealed that PV power unbalanced level together with equivalent mutual impedance among phase conductors has a significant impact on the effectiveness of traditional Var compensation methods on voltage regulation. On this basis, to improve the performance of voltage regulation methods, some suggestions are proposed for both current system operation and future distribution system planning. Numerical studies demonstrate the effectiveness of the proposed suggestions. Future rooftop PV integration in LV systems can benefit from this research.

2021 ◽  
Vol 19 ◽  
pp. 85-90
Author(s):  
Priscila Costa Nascimento ◽  
◽  
Michel Girotto de Oliveira ◽  
José Carlos M. Vieira

The growth of micro and mini distributed generation and, more recently, the use of electric energy storage systems and the incentives for electric mobility are important examples of the transformations that distribution networks have been going through. In this context, this paper firstly presents the impacts of uncoordinated plug-in electric vehicles (PEVs) charging in a real Brazilian distribution system. Four scenarios were elaborated with different PEVs penetration levels and the results show increased voltage unbalance, system losses, and violations of the steady-state voltage limits, even in the presence of an automatic voltage regulator installed in the medium voltage network. Then, as the main contribution, the potential usage of automatic voltage regulation at the low voltage network was investigated to minimize the negative impacts of uncontrolled PEV charging on distribution system steady-state operation. It is important to highlight that this is not a common practice of utilities in Brazil. The obtained results showed that regulating the voltage at the low voltage side could be an effective solution to keep the voltages within statutory limits.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 992
Author(s):  
Phi-Hai Trinh ◽  
Il-Yop Chung

Distributed energy resources (DERs), including renewable energy resources (RESs) and electric vehicles (EVs), have a significant impact on distribution systems because they can cause bi-directional power flow in the distribution lines. Thus, the voltage regulation and thermal limits of the distribution system to mitigate from the excessive power generation or consumption should be considered. The focus of this study is on a control strategy for DERs in low-voltage DC microgrids to minimize the operating costs and maintain the distribution voltage within the normal range based on intelligent scheduling of the charging and discharging of EVs, and to take advantage of RESs such as photovoltaic (PV) plants. By considering the time-of-use electricity rates, we also propose a 24-h sliding window to mitigate uncertainties in loads and PV plants in which the output is time-varied and the EV arrival cannot be predicted. After obtaining a request from the EV owner, the proposed optimal DER control method satisfies the state-of-charge level for their next journey. We applied the voltage sensitivity factor obtained from a load-flow analysis to effectively maintain voltage profiles for the overall DC distribution system. The performance of the proposed optimal DER control method was evaluated with case studies and by comparison with conventional methods.


Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 338
Author(s):  
Leslie Tracy ◽  
Praveen Kumar Sekhar

In this study, a low voltage solid-state circuit breaker (SSCB) was implemented for a DC distribution system using commercially available components. The design process of the high-side static switch was enabled through a voltage bias. Detailed functional testing of the current sensor, high-side switch, thermal ratings, analog to digital conversion (ADC) techniques, and response times of the SSCB was evaluated. The designed SSCB was capable of low-end lighting protection applications and tested at 50 V. A 15 A continuous current rating was obtained, and the minimum response time of the SSCB was nearly 290 times faster than that of conventional AC protection methods. The SSCB was implemented to fill the gap where traditional AC protection schemes have failed. DC distribution systems are capable of extreme faults that can destroy sensitive power electronic equipment. However, continued research and development of the SSCB is helping to revolutionize the power industry and change the current power distribution methods to better utilize clean renewable energy systems.


2019 ◽  
Vol 9 (14) ◽  
pp. 2813 ◽  
Author(s):  
Sayed Mir Shah Danish ◽  
Ryuto Shigenobu ◽  
Mitsunaga Kinjo ◽  
Paras Mandal ◽  
Narayanan Krishna ◽  
...  

A number of studies realized operation of power systems are unstable in developing countries due to misconfiguration of distribution systems, limited power transfer capability, inconsistency of renewable resources integration, paucity of control and protection measures, timeworn technologies, and disproportionately topology. This study underlines an Afghanistan case study with 40% power losses that is mainly pertinent from old distribution systems. The long length of distribution systems, low-power transfer capability, insufficient control and protection strategy, peak-demand elimination, and unstable operation (low energy quality and excessive voltage deviations) are perceived pre-eminent challenges of Afghanistan distribution systems. Some attainable solutions that fit challenges are remodeling (network reduction), networks reinforcement, optimum compensation strategy, reconfiguration options, improving, and transfer capability. This paper attempts to propose a viable solution using multiobjective optimization method of auto-tap-changer pole transformer (ATCTr). The proposed methodology in terms of optimal numbers and placement of ATCTr can be known as a novel two-dimensional solution. For this purpose, a real case of Kabul City distribution system is evaluated. Simulation results indicate the effectiveness of the proposed method in reducing system losses and improving system overall performance. This approach tends to regulate the voltage deviation in a proper and statutory range with minimum number and optimum placement of ATCTrs. The proposed method is simulated using MATLAB® environment to compare and evaluate performance of the proposed network under different situations and scenarios.


Author(s):  
V. Lakshmi Devi ◽  
T. Phanindra

Electrical distribution system suffers from various problems like reactive power burden, unbalanced loading, voltage regulation and harmonic distortion. Though DSTATCOMS are ideal solutions for such systems, they are not popular because of the cost and complexity of control involved. Phase wise balanced reactive power compensations are required for fast changing loads needing dynamic power factor correcting devices leading to terminal voltage stabilization. Static Var Compensators (SVCs) remain ideal choice for such loads in practice due to low cost and simple control strategy. These SVCs, while correcting power factor, inject harmonics into the lines causing serious concerns about quality of the distribution line supplies at PCC. This paper proposes to minimize the harmonics injected into the distribution systems by the operation of TSC-TCR type SVC used in conjunction with fast changing loads at LV distribution level. Fuzzy logic system and ANN are going to be used solve this nonlinear problem, giving optimum triggering delay angles used to trigger switches in TCR. The scheme with Artificial Neural Network (ANN) is attractive and can be used at distribution level where load harmonics are within limits. Verification of the system and by using mat lab / simulink with proper modeling.


2021 ◽  
Vol 13 (21) ◽  
pp. 12208
Author(s):  
Shabib Shahid ◽  
Saifullah Shafiq ◽  
Bilal Khan ◽  
Ali T. Al-Awami ◽  
Muhammad Omair Butt

Due to the recent advancements in the manufacturing process of solar photovoltaics (PVs) and electronic converters, solar PVs has emerged as a viable investment option for energy trading. However, distribution system with large-scale integration of rooftop PVs, would be subjected to voltage upper limit violations, unless properly controlled. Most of the traditional solutions introduced to address this problem do not ensure fairness amongst the on-line energy sources. In addition, other schemes assume the presence of communication linkages between these energy sources. This paper proposes a control scheme to mitigate the over-voltages in the distribution system without any communication between the distributed energy sources. The proposed approach is based on artificial neural networks that can utilize two locally obtainable inputs, namely, the nodal voltage and node voltage sensitivity and control the PV power. The controller is trained using extensive data generated for various loading conditions to include daily load variations. The control scheme was implemented and tested on a 12.47 kV feeder with 85 households connected on the 220 V distribution system. The results demonstrate the fair control of all the rooftop solar PVs mounted on various houses to ensure the system voltage are maintained within the allowed limits as defined by the ANSI C84.1-2016 standard. Furthermore, to verify the robustness of the proposed PV controller, it is tested during cloudy weather condition and the impact of integration of electric vehicles on the proposed controller is also analyzed. The results prove the efficacy of the proposed controller.


2021 ◽  
Vol 9 ◽  
Author(s):  
Surasit Sangob ◽  
Somporn Sirisumrannukul

There has been a growing presence of electric vehicles in many countries including Thailand, where many forms of incentives have been provided to build integrated infrastructure, and to encourage drivers to switch to electric vehicles (EVs). Because the immediate entry of EVs unavoidably can alter household load profiles, reinforcement on the existing system based on traditional planning may not be sufficient and can introduce over or under capital and operating expenditure over the time horizon. Therefore, if distribution systems are unreadily prepared for such an uptake, three obvious problems can be expected: 1) voltage regulation, 2) overloads of the distribution feeders and the distribution transformers, and 3) high energy loss. In this paper, an activity-based, time-sequential Monte Carlo Simulation algorithm was comprehensively developed for uncontrollable and smart charging, given annually updated information of EV locations and number of EVs, their energy consumption, hourly average vehicle speed, number of daily trips, travel distance per trip, size of EV batteries, time to arrive home and time to leave home. Minimizing the annual sum of investment and operating costs over a planning period could then be sequentially solved by a Particle Swarm Optimization (PSO) algorithm. The results from a practical 122-bus, 24 kV/400 V distribution system with different scenarios of uncontrollable and smart charging show that the sequential optimization embedded with deterministic decision can help improve customer voltage profile, keep feeder and transformer loading within acceptable operating limits and offer significant cost savings from energy loss. As far as a large number of low-voltage networks, and the associated large sum of cost savings are concerned, the proposed planning framework is practical to be applied and expected to be served as a new guideline for future implementation in Thailand.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1902 ◽  
Author(s):  
Qiangqiang Xie ◽  
Xiangrong Shentu ◽  
Xusheng Wu ◽  
Yi Ding ◽  
Yongzhu Hua ◽  
...  

The growing penetration of photovoltaic (PV) systems may cause an over-voltage problem in power distribution systems. Meanwhile, charging of massive electric vehicles may cause an under-voltage problem. The over- and under-voltage problems make the voltage regulation become more challenging in future power distribution systems. Due to the development of smart grid and demand response, flexible resources such as PV inverters and controllable loads can be utilized for voltage regulation in distribution systems. However, the voltage regulation needs to calculate the nonlinear power flow; as a result, utilizing flexible resources for voltage regulation is a nonlinear scheduling problem requiring heavy computational resources. This study proposes an intelligent search algorithm called voltage ranking search algorithm (VRSA) to solve the optimization of flexible resource scheduling for voltage regulation. The VRSA is built based on the features of radial power distribution systems. A numerical simulation test is carried out on typical power distribution systems. The VRSA is compared with the genetic algorithm and voltage sensitivity method. The results show that the VRSA has the best optimization effect among the three algorithms. By utilizing flexible resources through demand response, the tap operation times of on-load tap changers can be reduced.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 322
Author(s):  
Hyeong-Jin Lee ◽  
Jin-Seok Kim ◽  
Jae-Chul Kim ◽  
Sang-Yun Yun ◽  
Sung-Min Cho

As the application of low-voltage-direct-current system increases, fault analysis in the low-voltage-direct-current system has essential because the fault response has different from the conventional AC distribution system. Especially, the fault current by the discharge current of the capacitor in the low-voltage-direct-current distribution system has very large compared with the conventional AC distribution system. Therefore, this paper proposed the application of the superconducting fault current limiter for limiting the fault current on the low-voltage-direct-current system. As one of the protected methods against fault current, the superconducting fault current limiter which could quickly limit the fault current has been noticed as an attractive method. However, the protection relay may malfunction such as over current relay, selective protection relay due to limiting fault current by applying superconducting fault current limiter. Therefore, in this paper proposed a solution to malfunction problem of the protection relay using the voltage components of the high temperature superconductivity. This paper verified the effect of the proposed method through test modelling and PSCAD/EMTDC.


Sign in / Sign up

Export Citation Format

Share Document