scholarly journals Support System for Tunnelling in Squeezing Ground of Qingling-Daba Mountainous Area: A Case Study from Soft Rock Tunnels

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Xiuling Wang ◽  
Jinxing Lai ◽  
Rodney Sheldon Garnes ◽  
Yanbin Luo

Tunnelling or undertaking below-ground construction in squeezing ground can always present many engineering surprises, in which this complicated geology bring a series of tunnelling difficulties. Obviously, if the major affecting factors and mechanism of the structure damage in these complicated geological conditions are determined accurately, fewer problems will be faced during the tunnel excavation. For this study, reference is made to four tunnel cases located in the Qingling-Daba mountainous squeezing area that are dominated by a strong tectonic uplift and diversified geological structures. This paper establishes a strong support system suitable for a squeezing tunnel for the purpose of addressing problems exhibited in the extreme deformation of rock mass, structure crack, or even failure during excavation phase. This support system contains a number of temporary support measures used for ensuring the stability of tunnel face during tunnelling. The final support system was constructed, including some key techniques such as the employment of the foot reinforcement bolt (FRB), an overall strong support measure, and more reserved deformation. Results in this case study showed significant effectiveness of the support systems along with a safe and efficient construction process. The tunnel support system proposed in this paper can be helpful to support design and provide sufficient support and arrangement before tunnel construction in squeezing ground.

2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


2015 ◽  
Vol 75 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Ayub Elyasi ◽  
Mohammad Javadi ◽  
Taher Moradi ◽  
Javad Moharrami ◽  
Saeid Parnian ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ebu Bekir Aygar ◽  
Candan Gokceoglu

AbstractDue to the increasing population and resulting transportation needs, the number of subway and high-speed railway projects has also increased. The geometric constraints of such projects have caused many tunnels to be built in weak ground. Thus, weak ground tunnelling has attracted the attention of tunnel engineers and researchers. The main purposes of this study are to analyse the T4 tunnel excavated in weak ground and to compare the results obtained from the analytical solutions and 3D numerical analyses. This study specifically considers the T4 tunnel support system used in the Ankara İzmir High Speed Railway Project (Afyonkarahisar-Banaz Section). The T4 tunnel route encounters weak ground composed of layers of extremely weak mudstone, clayey sand, weakly cemented sandstone, and silty–clay matrix with pebbles. The tunnel overburden ranges from 10 to 35 m, which is shallow. After the excavation work of the T4 tunnel, severe deformation and critical stability problems in the shallow part (where the overburden is approximately 10 m) were encountered inside the tunnel, leading to a halt in construction. This was followed by revisions to the tunnel support system, leading to successful completion of the tunnel excavation. Numerical simulations of the low overburden section are performed using the commercially available FLAC3D program that uses the finite difference method. The characteristics of insufficient/ineffective support systems and adequate support systems for shallow tunnels excavated through weak ground are discussed in this study. Additionally, problems that pertain to the tunnel itself and its support system are discussed. The results of the 3D numerical analyses and analytical solutions are compared, and the advantages of 3D numerical analyses are discussed. The importance and necessity of tunnel face stability and roof stability for tunnel stability in weak ground is illustrated. Consequently, solutions based on analytical and numerical analyses are presented, and the analysis methodology and solutions proposed in the study can help guide weak ground tunnelling design and evaluation.


2016 ◽  
Vol 38 (1) ◽  
pp. 75-84
Author(s):  
Asif Riaz ◽  
Syed Muhammad Jamil ◽  
Muhammad Asif ◽  
Kamran Akhtar

Abstract The paper analyses the geological conditions of study area, rock mass strength parameters with suitable support structure propositions for the under construction Nahakki tunnel in Mohmand Agency. Geology of study area varies from mica schist to graphitic marble/phyllite to schist. The tunnel ground is classified and divided by the empisical classification systems like Rock mass rating (RMR), Q system (Q), and Geological strength index (GSI). Tunnel support measures are selected based on RMR and Q classification systems. Computer based finite element analysis (FEM) has given yet another dimension to design approach. FEM software Phase2 version 7.017 is used to calculate and compare deformations and stress concentrations around the tunnel, analyze interaction of support systems with excavated rock masses and verify and check the validity of empirically determined excavation and support systems.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3767
Author(s):  
Kai Wang ◽  
Lianguo Wang ◽  
Bo Ren

This paper introduces a case study on the failure mechanism and support design of a roadway tunnel in the fault fracture zone of the 106 mining area in the Yuandian no.2 coal mine. Based on the on-site geological conditions (in-situ stress test, borehole television imaging, and lithological analysis), the failure mechanism of the roadway tunnel in the fault fracture zone was studied. The test results showed that the high tectonic stress, fractured rock, and poor lithology are the primary reasons for the roadway instability. According to the support principles of grouting reinforcement, pre-reinforced support, and rational support range, a new type of combined support technology was proposed, including advanced grouting, grouting bolts, and grouting anchor cables. A 100 m roadway section was selected for field testing using the new support scheme, and detailed deformation monitoring was performed. Monitoring results showed that the roadway deformation under the new support was significantly reduced. During the roadway excavation process, no roof collapse phenomenon occurred, and the safety of roadway excavation was ensured. This successful case provides an important reference for similar roadway projects in the fault fracture zone.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256243
Author(s):  
Jianjun Zhang ◽  
Baicong Yao ◽  
Yunhe Ao ◽  
Chunzhe Jin ◽  
Chuang Sun

Proper mechanical model selection is critical in tunnel support design and stability analysis, especially to reflect the creep and strain-softening behavior of soft rock. We present a coupled nonlinear Burgers strain-softening (NBSS) model and numerical calculation method to investigate the coupled effects of creep and strain-softening of soft rock tunnels. The nonlinear elastic-viscous model is used to simulate the steady creep behavior of mudstone, and the nonlinear viscoplastic strain-softening model is used to simulate the accelerated creep behavior and post-peak strength attenuation behavior. The experimental results show that the viscoplastic parameters and post-peak softening parameters of mudstone are highly sensitive to confining pressure and exhibit nonlinear characteristics. The accelerated creep curve obtained by the numerical calculation is consistent with the experiments, which verifies the model reliability. We use the NBSS and nonlinear Burgers Mohr-Coulomb (NBMC) models to calculate the plastic zone distribution characteristics and deformation law. The distribution of the plastic zone calculated by the NBSS model is larger with more localized fractures. The NBSS model is useful for studying the evolution of stress and displacement fields of complex surrounding rock mass, which provides important theoretical guidelines for the support design and stability analysis of soft rock tunnel engineering.


2021 ◽  
Vol 325 ◽  
pp. 01006
Author(s):  
Hanifah Hilda Herdiana ◽  
I Gde Budi Indrawan ◽  
Hendy Setiawan

An engineering geological mapping was carried out at the construction site of the Tunnel 10 of Jakarta Bandung High-Speed Railway to obtain data and information of the engineering geological conditions, particularly the rock masses. This research aims to determine the rock mass classes at the tunnel construction site and recommend the tunnel support system based on the Rock Mass Rating (RMR) and the Japan Society of Civil Engineers (JSCE) systems. This research is expected to better understand the rock mass classes, which were previously determined based on the newly applied Basic Quality (BQ) system for the tunnel support empirical design. The results showed that the research area consisted of young volcanic products, namely moderate to highly weathered tuff breccia and andesitic breccia. The uniaxial Compressive Strength (UCS) of rock mass varies between 1-25 MPa. The RMR value ranges from 21 to 40, indicating disintegrated and poor rock mass quality. The proposed tunnel support system is the combination of shotcrete, steel support for top heading and bench support, arch sidewall, and invert concrete.


2019 ◽  
Vol 11 (13) ◽  
pp. 3510 ◽  
Author(s):  
Xue ◽  
Gu ◽  
Fang ◽  
Wei

Large deformation and failure of soft rock are pressing problems in the mining practice. This paper provides a case study on failure mechanisms and support approaches for a water-rich soft rock roadway in tectonic stress areas of the Wangzhuang coal mine, China. Mechanic properties of rock mass related to the roadway are calibrated via a geological strength index method (GSI), based on which a corresponding numerical simulation model is established in the Universal Discrete Element Code (UDEC) software. The failure mechanism of the roadway under water-saturating and weathering conditions is revealed by field tests and numerical simulation. It is found that the stress evolution and crack development are affected by weathering and horizontal tectonic stresses. The roadway roof and floor suffer from high stress concentration and continuous cracking, and are consequently seen with rock failure, strength weakening, and pressure relief. Unfortunately, the current support system fails to restrain rock weathering and strength weakening, and the roadway is found with serious floor heave, roof subsidence, and large asymmetric deformation. Accordingly, a new combined support system of “bolt–cable–mesh–shotcrete + grouting” is proposed. Moreover, numerical simulation and field testing are conducted to validate the feasibility and effectiveness of the proposed approach, the results of which demonstrate the capacity of the proposed new support method to perfectly control the surrounding rock. Findings of this research can provide valuable references for support engineering in the soft rock roadway under analogous geological conditions.


2004 ◽  
Vol 29 ◽  
Author(s):  
Kaustubh Mani Nepal

This paper deals with an application of New Australian Tunnelling Method (NATM) in low cover tunnelling in Lesser Himalaya of Nepal. The length of the tunnel is 365.8 m with a 8.2 m finished diameter. The average thickness of the rock overburden is 16- 18 m with a maximum of 30 m, whereas average side cover is 40 m. Top heading and multiple benching methods were applied for tunnelling work. The rational support design techniques were conceived together with Bieniawski's Support Guideline for each standard support classes. Standard initial support system was designed according to NATM, to provide complete stabilization of excavation. It consisted of a combination of systematic rock bolts and shotcrete.  The smooth blasting technique was adopted for the tunnel excavation. The specific charge was 1.39-1.47 kg/m3 A special emphasis was given in the collection of discontinuity data so that the rock mass could be evaluated effectively. Geomechanics classification for rock mass was used for the rock mass evaluation. The rock mass was also back evaluated by using Q and GSI classification on the basis of installed support. After the careful assessment of the data, the rock mass in the tunnel was classified into fair to poor according to RMR and Q and blocky / disturbed to very blocky / fair according to GSI. The rock mass parameters collected during the construction stage agree with the data collected at surface during feasibility and tendering stages. The rock mass classification based on the surface outcrop survey and drillings was a considerable success and found to be very close to the actual condition. The effectiveness of revised support system with steel rib was found to be negligible or minimum for tunnel support. Rock support deformation monitoring in the tunnel was regularly carried out to determine the efficiency and adequacy of the installed support.


Sign in / Sign up

Export Citation Format

Share Document