scholarly journals Melatonin Prevents Osteoarthritis-Induced Cartilage Degradation via Targeting MicroRNA-140

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yijian Zhang ◽  
Jun Lin ◽  
Xinfeng Zhou ◽  
Xi Chen ◽  
Angela Carley Chen ◽  
...  

Osteoarthritis (OA) is characterized by the progressive destruction of articular cartilage, which is involved in the imbalance between extracellular matrix (ECM) synthesis and degradation. MicroRNA-140-5p (miR-140) is specifically expressed in cartilage and plays an important role in OA-induced matrix degradation. The aim of this study was to investigate (1) whether intra-articular injection of melatonin could ameliorate surgically induced OA in mice and (2) whether melatonin could regulate matrix-degrading enzymes at the posttranscriptional level by targeting miR-140. In an in vitro OA environment induced by interleukin-1 beta (IL-1β), melatonin treatment improved cell proliferation of human chondrocytes, promoted the expression of cartilage ECM proteins (e.g., type II collagen and aggrecan), and inhibited the levels of IL-1β-induced proteinases, such as matrix metalloproteinase 9 (MMP9), MMP13, ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4), and ADAMTS5. Both the microarray and polymerase chain reaction (PCR) experiments revealed that miR-140 was a melatonin-responsive microRNA and melatonin upregulated miR-140 expression, which was suppressed by IL-1β stimulation. In vivo experiments demonstrated that intra-articular injection of melatonin prevented disruptions of cartilage matrix homeostasis and successfully alleviated the progression of surgery-induced OA in mice. Transfection of miR-140 antagomir completely counteracted the antiarthritic effects of melatonin by promoting matrix destruction. Our findings demonstrate that melatonin protects the articular cartilage from OA-induced degradation by targeting miR-140, and intra-articular administration of melatonin may benefit patients suffering from OA.

2015 ◽  
Vol 36 (5) ◽  
pp. 1753-1766 ◽  
Author(s):  
Changhe Hou ◽  
Fangang Meng ◽  
Zhiqi Zhang ◽  
Yan Kang ◽  
Weishen Chen ◽  
...  

Aim: The molecular pathways regulating cartilage degradation are unclear. miR-381 was identified as a putative regulator of chondrogenesis related genes. Here, we examined its role in chondrogenesis and osteoarthritic cartilage degeneration. Methods: miR-381 expression was assessed in vitro in response to IL-1β stimulation in primary human (PHC) and mouse (PMC) chondrocytes, and ATDC5 derived chondrocytes; and in vivo in mouse embryos and human osteoarthritic cartilage. The effects of miR-381 on chondrogenesis and NF-kB signaling were assessed using a synthetic RNA mimic or inhibitor and luciferase assay, respectively. Upstream regulators of miR381 were probed using siRNA or overexpression plasmids for Sox9 and Runx2. Results: miR-381 expression was elevated in chondrogenic and hypertrophic ATDC5 cells. miR-381 was induced in vitro by IL-1β in ATDC5 cells, PMCs, and PHCs, and was expressed in areas of cartilage degradation or absorption in vivo. Overexpression of Runx2 or Sox9 increased miR-381 expression in ATDC5 cells. miR-381 suppressed expression of collagen, type II, alpha 1, and enhanced expression of metalloproteinase-13 (MMP-13), but did not regulate NFKBIA and NKRF activity. Conclusion: miR-381 was highly expressed during chondrogenesis and in arthritic cartilage. It may contribute to absorption of the cartilage matrix by repressing type II collagen and inducing MMP-13.


2021 ◽  
Vol 22 (24) ◽  
pp. 13595
Author(s):  
Sophie Jane Gilbert ◽  
Cleo Selina Bonnet ◽  
Emma Jane Blain

The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.


2018 ◽  
Vol 49 (6) ◽  
pp. 2304-2319 ◽  
Author(s):  
Zhenhui Lu ◽  
Qin Liu ◽  
Lei Liu ◽  
Huayu Wu ◽  
Li Zheng ◽  
...  

Background/Aims: 3, 4, 5-trihydroxy-N-{4-[(5-methylisoxazol-3-yl) sulfamoyl] phenyl} benzamide (JEZTC), synthesized from gallic acid (GA) and sulfamethoxazole (SMZ), was reported with chondroprotective effects. However, the effects of JEZTC on osteoarthritis (OA) are still unclear. The goal of this study was to investigate the anti-osteoarthritic properties of JEZTC on interleukin-1-beta (IL-1β) stimulated chondrocytes in vitro and a rabbit anterior cruciate ligament transaction (ACLT) OA model in vivo. Methods: Changes in matrix metalloproteinases (MMPs) and apoptosis genes (bax, caspase 3 and tnf-α) and OA-specific protein (MMP-1) expression in vitro and in vivo were detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. The production of reactive oxygen species (ROS) were investigated upon the treatment of JEZTC in chondrocytes processed with IL-1β in vitro and OA in vivo. Effect of JEZTC on OA was further studied by the macroscopic and histological evaluation and scores. The key proteins in signaling pathways inMAPK/P38, PI3KAkt and NF-κB also determined using western blot (WB) analysis. Results: JEZTC could significantly suppress the expression of MMPs and intracellular ROS, while meaningfully increase the gene expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Moreover, there was less cartilage degradation in JEZTC group compared with the phosphate-buffered saline (PBS) group in vivo. Results also indicated that JEZTC exerts effect on OA by regulating MAPKs and PI3K/Akt signaling pathways to activate NF-κB pathway, leading to the down-regulation of MMPs. The chondro-protective effect of JEZTC may be related with its ability to inhibit chondrocyte apoptosis by reduction of ROS production. Conclusion: JEZTC may be a possible therapeutic agent in the treatment of OA.


2021 ◽  
Author(s):  
Gaosheng Zhu ◽  
Keze Miao ◽  
Mingwei Dong ◽  
Jie Cai ◽  
Zhihao Shen ◽  
...  

Abstract Osteoarthritis (OA), a prevalent disabling disease, is characterized by irreversible cartilage degradation and persistent inflammation. The etiology as well as pathogenesis of OA are not completely unclear and need further investigation. Gigantol, is a bibenzyl derivative extracted from Dendrobium plants and has been found exhibit multiple effects such as anti-inflammatory effects. Nevertheless, the biological function of gigantol on osteoarthritis (OA) is still uncertain. This study aimed at examining the anti-inflammatory effects and latent mechanisms of gigantol in IL-1β-mediated OA progression. In vitro, we identified that gigantol treatment suppressed tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) in interleukin-1 beta (IL-1β) mediated mouse OA chondrocytes. Gigantol was also shown to dose dependently downregulate the metalloproteinase 13 (MMP13) as well as thrombospondin motifs 5 (ADAMTS5) levels. Moreover, IL-1β-mediated AKT and PI3K phosphorylation as well as NF-κB activation were inhibited by gigantol. Meanwhile, in vivo, we detected that gigantol treatment inhibited degradation of the cartilage degradation and lowered the Osteoarthritis Research Society International scores (OARSI) in OA mouse. Therefore, gigantol is a promising therapeutic option for OA.


2019 ◽  
Vol 65 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Siwei LI ◽  
Guodong NIU ◽  
X. Neil DONG ◽  
Zhongjun LIU ◽  
Chunli SONG ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hongsik Cho ◽  
Andrew Walker ◽  
Jeb Williams ◽  
Karen A. Hasty

Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-αwas incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxibin vivowas investigated using a posttraumatic OA (PTOA) mouse model.In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 productionin vitroand that celecoxib may demonstrate beneficial effects on anabolic metabolismin vivo.


1994 ◽  
Vol 425 (4) ◽  
Author(s):  
R.M. Hembry ◽  
M.R. Bagga ◽  
J.T. Dingle ◽  
P. Page Thomas ◽  
J.J. Reynolds

2021 ◽  
Author(s):  
Kosei Nagata ◽  
Hironori Hojo ◽  
Song Ho Chang ◽  
Hiroyuki Okada ◽  
Fumiko Yano ◽  
...  

Abstract The Runt-related transcription factor (Runx) family plays various roles in the homeostasis of cartilage. Here, we examined the role of Runx2 and Runx3 for osteoarthritis (OA) development in vivo and in vitro. Runx3 knockout mice accelerated OA by surgical induction, accompanied with decreased expression of lubricin and aggrecan. Meanwhile, Runx2 conditional knockout mice showed biphasic phenotypes; OA was inhibited by hetero-knockout accompanied with decreased matrix metallopeptidase 13 (Mmp13) expression, but accelerated in homo-knockout of Runx2 accompanied with reduction of type II collagen (Col2a1) expression. Comprehensive transcriptional analyses revealed lubricin and aggrecan as transcriptional target genes of Runx3, and indicated that Runx2 sustained Col2a1 expression through an intron 6 enhancer when Sox9 was decreased. Intra-articular administration of Runx3 adenovirus ameliorated development of surgically induced OA. Runx3 protects adult articular cartilage through extracellular matrix protein production under the normal condition, while Runx2 exerts both catabolic and anabolic effects under the inflammatory condition.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Li Zeng ◽  
Cai Zhi Xiao ◽  
Zi Ting Deng ◽  
Rong Heng Li

Fu Yuan Capsule (FYC) has been clinically used for osteoarthritis (OA) and its related diseases for many years in China. However, its pharmacological mechanism remains unclear. This study aimed to investigate the potential chondroprotective effects of FYC on articular cartilage. Rat OA model was induced by anterior cruciate ligament transection. A group of rats was treated with FYC for 12 weeks. Joint structure, types I and II collagen, and proteoglycan were evaluated by histological examination. The expression of C-terminal crosslinking telopeptide of type II collagen, hydroxyproline, a disintegrin and metalloproteinase with thrombospondin motifs, matrix metalloproteinase, interleukin-1 beta, nitric oxide, prostaglandin E2, heat-shock protein 70, transforming growth factor-beta, osteoprotegerin, and receptor activator of nuclear factor κB ligand were detected. Treatment with FYC could protect against articular cartilage injury. FYC treatment significantly decreased the extracellular matrix degradation factors and inflammatory mediators. Moreover, articular cartilage protective factors were increased in the FYC group. The current finding suggests that FYC protects articular cartilage in a rat OA model through various ways. Thus, it may be an effective agent for OA treatment.


Sign in / Sign up

Export Citation Format

Share Document