scholarly journals The Role of MicroRNA-381 in Chondrogenesis and Interleukin-1-β Induced Chondrocyte Responses

2015 ◽  
Vol 36 (5) ◽  
pp. 1753-1766 ◽  
Author(s):  
Changhe Hou ◽  
Fangang Meng ◽  
Zhiqi Zhang ◽  
Yan Kang ◽  
Weishen Chen ◽  
...  

Aim: The molecular pathways regulating cartilage degradation are unclear. miR-381 was identified as a putative regulator of chondrogenesis related genes. Here, we examined its role in chondrogenesis and osteoarthritic cartilage degeneration. Methods: miR-381 expression was assessed in vitro in response to IL-1β stimulation in primary human (PHC) and mouse (PMC) chondrocytes, and ATDC5 derived chondrocytes; and in vivo in mouse embryos and human osteoarthritic cartilage. The effects of miR-381 on chondrogenesis and NF-kB signaling were assessed using a synthetic RNA mimic or inhibitor and luciferase assay, respectively. Upstream regulators of miR381 were probed using siRNA or overexpression plasmids for Sox9 and Runx2. Results: miR-381 expression was elevated in chondrogenic and hypertrophic ATDC5 cells. miR-381 was induced in vitro by IL-1β in ATDC5 cells, PMCs, and PHCs, and was expressed in areas of cartilage degradation or absorption in vivo. Overexpression of Runx2 or Sox9 increased miR-381 expression in ATDC5 cells. miR-381 suppressed expression of collagen, type II, alpha 1, and enhanced expression of metalloproteinase-13 (MMP-13), but did not regulate NFKBIA and NKRF activity. Conclusion: miR-381 was highly expressed during chondrogenesis and in arthritic cartilage. It may contribute to absorption of the cartilage matrix by repressing type II collagen and inducing MMP-13.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yijian Zhang ◽  
Jun Lin ◽  
Xinfeng Zhou ◽  
Xi Chen ◽  
Angela Carley Chen ◽  
...  

Osteoarthritis (OA) is characterized by the progressive destruction of articular cartilage, which is involved in the imbalance between extracellular matrix (ECM) synthesis and degradation. MicroRNA-140-5p (miR-140) is specifically expressed in cartilage and plays an important role in OA-induced matrix degradation. The aim of this study was to investigate (1) whether intra-articular injection of melatonin could ameliorate surgically induced OA in mice and (2) whether melatonin could regulate matrix-degrading enzymes at the posttranscriptional level by targeting miR-140. In an in vitro OA environment induced by interleukin-1 beta (IL-1β), melatonin treatment improved cell proliferation of human chondrocytes, promoted the expression of cartilage ECM proteins (e.g., type II collagen and aggrecan), and inhibited the levels of IL-1β-induced proteinases, such as matrix metalloproteinase 9 (MMP9), MMP13, ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4), and ADAMTS5. Both the microarray and polymerase chain reaction (PCR) experiments revealed that miR-140 was a melatonin-responsive microRNA and melatonin upregulated miR-140 expression, which was suppressed by IL-1β stimulation. In vivo experiments demonstrated that intra-articular injection of melatonin prevented disruptions of cartilage matrix homeostasis and successfully alleviated the progression of surgery-induced OA in mice. Transfection of miR-140 antagomir completely counteracted the antiarthritic effects of melatonin by promoting matrix destruction. Our findings demonstrate that melatonin protects the articular cartilage from OA-induced degradation by targeting miR-140, and intra-articular administration of melatonin may benefit patients suffering from OA.


2007 ◽  
Vol 361 (1) ◽  
pp. 93-101 ◽  
Author(s):  
O.V. Nemirovskiy ◽  
D.R. Dufield ◽  
T. Sunyer ◽  
P. Aggarwal ◽  
D.J. Welsch ◽  
...  

2018 ◽  
Vol 49 (6) ◽  
pp. 2304-2319 ◽  
Author(s):  
Zhenhui Lu ◽  
Qin Liu ◽  
Lei Liu ◽  
Huayu Wu ◽  
Li Zheng ◽  
...  

Background/Aims: 3, 4, 5-trihydroxy-N-{4-[(5-methylisoxazol-3-yl) sulfamoyl] phenyl} benzamide (JEZTC), synthesized from gallic acid (GA) and sulfamethoxazole (SMZ), was reported with chondroprotective effects. However, the effects of JEZTC on osteoarthritis (OA) are still unclear. The goal of this study was to investigate the anti-osteoarthritic properties of JEZTC on interleukin-1-beta (IL-1β) stimulated chondrocytes in vitro and a rabbit anterior cruciate ligament transaction (ACLT) OA model in vivo. Methods: Changes in matrix metalloproteinases (MMPs) and apoptosis genes (bax, caspase 3 and tnf-α) and OA-specific protein (MMP-1) expression in vitro and in vivo were detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. The production of reactive oxygen species (ROS) were investigated upon the treatment of JEZTC in chondrocytes processed with IL-1β in vitro and OA in vivo. Effect of JEZTC on OA was further studied by the macroscopic and histological evaluation and scores. The key proteins in signaling pathways inMAPK/P38, PI3KAkt and NF-κB also determined using western blot (WB) analysis. Results: JEZTC could significantly suppress the expression of MMPs and intracellular ROS, while meaningfully increase the gene expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Moreover, there was less cartilage degradation in JEZTC group compared with the phosphate-buffered saline (PBS) group in vivo. Results also indicated that JEZTC exerts effect on OA by regulating MAPKs and PI3K/Akt signaling pathways to activate NF-κB pathway, leading to the down-regulation of MMPs. The chondro-protective effect of JEZTC may be related with its ability to inhibit chondrocyte apoptosis by reduction of ROS production. Conclusion: JEZTC may be a possible therapeutic agent in the treatment of OA.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Fan Yang ◽  
Haoran Hu ◽  
Wenjing Yin ◽  
Guangyi Li ◽  
Ting Yuan ◽  
...  

Background. Platelet-rich plasma (PRP) has been shown to be a promising therapeutic agent against osteoarthritis (OA), whereas its chondroprotection mechanism is not fully elucidated. Autophagy is considered an important biological process throughout the development of OA. Therefore, the objective of the present study is to investigate the role of autophagy in the chondroprotection and compare the effects of releasate between L-PRP and P-PRP. Methods. PRP were prepared from rat blood. Rat chondrocytes pretreated in the presence or absence of interleukin-1 beta (IL-1β) were incubated with PRP releasate. The expressions of OA-related genes and autophagy-related genes were determined by RT-PCR and western blot, respectively. Autophagic bodies were assessed by transmission electron microscopy and the autophagy flux was monitored under the confocal microscopy. The effect of PRP on autophagy was further investigated in the milieu of autophagy activator, rapamycin, or autophagy inhibition by downregulation of Atg5. The effect of PRP on cartilage repair and autophagy was also evaluated in an OA rat model. Results. In vitro, PRP releasate increased the expression of the anabolic genes, COL2 and Aggrecan, and decreased the expression of the catabolic genes, whereas the expression of autophage markers, Atg5 and Beclin-1, as well as the ratio of LC3 II/LC3 I, was not significantly altered in normal or IL-1β-treated chondrocytes. Similar expression pattern was found following the activation (rapamycin) or inhibition (Atg5 silencing) of autophagy. In vivo, PRP releasate ameliorated posttraumatic cartilage degeneration while the expression of LC3 was comparable to that in the vehicle treatment group. Conclusions. PRP releasate promoted the anabolic gene expression, relieved inflammatory stress in chondrocytes, and ameliorated cartilage degeneration, but autophagy was independent of these processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christelle Sanchez ◽  
Kathrin Hemmer ◽  
Natascha Krömmelbein ◽  
Bernd Seilheimer ◽  
Jean-Emile Dubuc ◽  
...  

Objectives: Zeel T (Ze14) is a multicomponent medicinal product. Initial preclinical data suggested a preventive effect on cartilage degradation. Clinical observational studies demonstrated that Ze14 reduced symptoms of osteoarthritis (OA), including stiffness and pain. This study aimed to explore these effects further to better understand the mode of action of Ze14 on human OA chondrocytes in vitro.Methods: Primary chondrocytes were obtained from the knees of 19 OA patients and cultured either as monolayers or in alginate beads. The cultures were treated with 20% or 10% (v/v) Ze14 or placebo. For RNA-seq, reads were generated with Illumina NextSeq5000 sequencer and aligned to the human reference genome (UCSC hg19). Differential expression analysis between Ze14 and placebo was performed in R using the DESeq2 package. Protein quantification by ELISA was performed on selected genes from the culture medium and/or the cellular fractions of primary human OA chondrocyte cultures.Results: In monolayer cultures, Ze14 20% (v/v) significantly modified the expression of 13 genes in OA chondrocytes by at least 10% with an adjusted p-value < 0.05: EGR1, FOS, NR4A1, DUSP1, ZFP36, ZFP36L1, NFKBIZ, and CCN1 were upregulated and ATF7IP, TXNIP, DEPP1, CLEC3A, and MMP13 were downregulated after 24 h Ze14 treatment. Ze14 significantly increased (mean 2.3-fold after 24 h, p = 0.0444 and 72 h, p = 0.0239) the CCN1 protein production in human OA chondrocytes. After 72 h, Ze14 significantly increased type II collagen pro-peptide production by mean 27% (p = 0.0147). For both time points CCN1 production by OA chondrocytes was correlated with aggrecan (r = 0.66, p = 0.0004) and type II collagen pro-peptide (r = 0.64, p = 0.0008) production. In alginate beads cultures, pro-MMP-13 was decreased by Ze14 from day 7–14 (from −16 to −25%, p < 0.05) and from day 17–21 (−22%, p = 0.0331) in comparison to controls.Conclusion: Ze14 significantly modified the expression of DUSP1, DEPP1, ZFP36/ZFP36L1, and CLEC3A, which may reduce MMP13 expression and activation. Protein analysis confirmed that Ze14 significantly reduced the production of pro-MMP-13. As MMP-13 is involved in type II collagen degradation, Ze14 may limit cartilage degradation. Ze14 also promoted extracellular matrix formation arguably through CCN1 production, a growth factor well correlated with type II collagen and aggrecan production.


2021 ◽  
Author(s):  
Gaosheng Zhu ◽  
Keze Miao ◽  
Mingwei Dong ◽  
Jie Cai ◽  
Zhihao Shen ◽  
...  

Abstract Osteoarthritis (OA), a prevalent disabling disease, is characterized by irreversible cartilage degradation and persistent inflammation. The etiology as well as pathogenesis of OA are not completely unclear and need further investigation. Gigantol, is a bibenzyl derivative extracted from Dendrobium plants and has been found exhibit multiple effects such as anti-inflammatory effects. Nevertheless, the biological function of gigantol on osteoarthritis (OA) is still uncertain. This study aimed at examining the anti-inflammatory effects and latent mechanisms of gigantol in IL-1β-mediated OA progression. In vitro, we identified that gigantol treatment suppressed tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) in interleukin-1 beta (IL-1β) mediated mouse OA chondrocytes. Gigantol was also shown to dose dependently downregulate the metalloproteinase 13 (MMP13) as well as thrombospondin motifs 5 (ADAMTS5) levels. Moreover, IL-1β-mediated AKT and PI3K phosphorylation as well as NF-κB activation were inhibited by gigantol. Meanwhile, in vivo, we detected that gigantol treatment inhibited degradation of the cartilage degradation and lowered the Osteoarthritis Research Society International scores (OARSI) in OA mouse. Therefore, gigantol is a promising therapeutic option for OA.


2019 ◽  
Vol 15 (11) ◽  
pp. 2281-2290 ◽  
Author(s):  
Yao Zhao ◽  
Zhesheng He ◽  
Ruoping Wang ◽  
Pengju Cai ◽  
Xiangchun Zhang ◽  
...  

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and progressive cartilage and bone damage. In our previous studies, we found that Au clusters using glutathione as a template (GACs) produced profound anti-inflammatory effects in vitro on lipopolysaccharide (LPS)-induced inflammation in mouse macrophage RAW 264.7 cells and type II collagen-induced rat RA in vivo. In this study, we examined whether the template for Au clusters synthesis has an effect on its anti-inflammatory effect and whether Au nanoparticles with larger particle diameter produce the same anti-inflammatory effect. We synthesized Au clusters with bovine serum albumin (BSA) as a template (BACs), Au clusters with glutathione (GSH) as a template (GACs), and Au nanoparticles with glutathione as a template (GANs) and compared their anti-inflammatory effects in vitro and in vivo. These three Au nanomaterials can inhibit the production of lipopolysaccharide (LPS)-induced proinflammatory mediators and ameliorate type II collagen-induced rat RA. However, although the three Au nanomaterials produced similar anti-inflammatory effects, the GANs with larger particle sizes were less stable in vivo and accumulated in the peritoneum after intraperitoneal injection, resulting in poor absorption in vivo. The BACs showed relatively high liver accumulation due to the larger molecular weight of the outer shell. Therefore, we believe that the GACs are potential reliable nanodrugs for the treatment of RA.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hongsik Cho ◽  
Andrew Walker ◽  
Jeb Williams ◽  
Karen A. Hasty

Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-αwas incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxibin vivowas investigated using a posttraumatic OA (PTOA) mouse model.In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 productionin vitroand that celecoxib may demonstrate beneficial effects on anabolic metabolismin vivo.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Xin Pan ◽  
Kang Xu ◽  
Xuefeng Qiu ◽  
Wen Zhao ◽  
Dong Wang ◽  
...  

This study aimed to investigate the extract components of FP on rat chondrocyte function and cartilaginous formation in vitro. Petroleum ether extract (P-e) of FP extract components was selected to treat Sprague-Dawley rat chondrocytes. Cell viability was tested with different concentrations (0.1, 1, 10, and 100 μg/mL) of P-e treatment. Concentrations of 0.1 and 1 μg/mL P-e conditioned culture mediums were used for treating chondrocytes in experiments. Cell proliferation was measured via DNA incorporation assay. Type II collagen, aggrecan, and Sox-9 genes expression levels were measured with RT-PCR. Additionally, cartilaginous formation was analyzed with type II collagen immunofluorescence, H&E, and alcian blue staining. Concentrations of 0.1 and 1 μg/mL P-e showed low cytotoxicity and demonstrated stimulatory effects on chondrocyte proliferation in early stages. Following 6 days of P-e culture, aggrecan and Sox-9 gene expression levels of the 1 μg/mL P-e group were upregulated by 1.82- (p<0.05) and 2.06-fold (p<0.05), respectively, versus controls. Moreover, 1 μg/mL P-e significantly stimulated cell aggregation and type II collagen deposits after 1 week of treatment. Noteworthy, tight cartilaginous structures formed in the 10-day 1 μg/mL P-e conditioned culture. These findings suggest that P-e has the potential to treat cartilage degeneration induced by chondrocyte failure.


2013 ◽  
Vol 205 (2) ◽  
pp. 90-99 ◽  
Author(s):  
Dinorah Jean-Gilles ◽  
Liya Li ◽  
V.G. Vaidyanathan ◽  
Roberta King ◽  
Bongsup Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document