scholarly journals SLC1A1, SLC16A9, and CNTN3 Are Potential Biomarkers for the Occurrence of Colorectal Cancer

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jie Zhou ◽  
Zhiman Xie ◽  
Ping Cui ◽  
Qisi Su ◽  
Yu Zhang ◽  
...  

Background. This study is aimed at identifying unknown clinically relevant genes involved in colorectal cancer using bioinformatics analysis. Methods. Original microarray datasets GSE107499 (ulcerative colitis), GSE8671 (colorectal adenoma), and GSE32323 (colorectal cancer) were downloaded from the Gene Expression Omnibus. Common differentially expressed genes were filtered from the three datasets above. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, followed by construction of a protein-protein interaction network to identify hub genes. Kaplan-Meier survival analysis and TIMER database analysis were used to screen the genes related to the prognosis and tumour-infiltrating immune cells of colorectal cancer. Receiver operating characteristic curves were used to assess whether the genes could be used as markers for the diagnosis of ulcerative colitis, colorectal adenoma, and colorectal cancer. Results. A total of 237 differentially expressed genes common to the three datasets were identified, of which 60 were upregulated, 125 were downregulated, and 52 genes that were inconsistently up- and downregulated. Common differentially expressed genes were mainly enriched in the cellular component of extracellular exosome and integral component of membrane categories. Eight hub genes, i.e., CXCL3, CXCL8, CEACAM7, CNTN3, SLC1A1, SLC16A9, SLC4A4, and TIMP1, were related to the prognosis and tumour-infiltrating immune cells of colorectal cancer, and these genes have diagnostic value for ulcerative colitis, colorectal adenoma, and colorectal cancer. Conclusion. Three novel genes, CNTN3, SLC1A1, and SLC16A9 were shown to have diagnostic value with respect to the occurrence of colorectal cancer and should be verified in future studies.

2021 ◽  
Author(s):  
Yuxuan HUANG ◽  
Ge CUI

Abstract Aims: To utilize the bioinformatics to analyze the differentially expressed genes (DEGs), interaction proteins, perform gene enrichment analysis, protein-protein interaction network (PPI) and map the hub genes between colorectal cancer(CRC) and colorectal adenocarcinomas(CA).Methods: We analyzed a microarray dataset (GSE32323 and GSE4183) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in tumor tissues and non-cancerous tissues were identified using the dplyr and Venn diagram packages of the R Studio software. Functional annotation of the DEGs was performed using the Gene Ontology (GO) website. Pathway enrichment (KEGG) used the WebGestalt to analyze the data and R Studio to generate the graph. We constructed a protein–protein interaction (PPI) network of DEGs using STRING and Cytoscape software was used for visualization. Survival analysis of the hub genes and was performed using the online platform GEPIA to determine the prognostic value of the expression of hub genes in cell lines from CRC patients. The expression of molecules with prognostic values was validated on the UALCAN database. The expression of hub genes was examined using the Human Protein Atlas. Results: Applying the GEO2R analysis and R studio, we identified a total of 471 upregulated and 278 downregulated DEGs. By using the online database WebGestalt, we identified the most relevant biological networks involving DEGs with statistically significant differences in expression were mainly associated with biological processes involved in the cell proliferation, cell cycle transition, cell homeostasis and indicated the role of each DEGs in cell cycle regulation pathways. We found 10 hub genes with prognostic values were overexpressed in the CRC and CA samples.Conclusion: we found out ten hub genes and three core genes closely associated with the pathogenesis and prognosis of CRC and CA, which is of great significance for colorectal tumor early detection and prognosis evaluation.


2020 ◽  
Vol 48 (8) ◽  
pp. 030006052094903
Author(s):  
Xue Zhang ◽  
Jing Zuo ◽  
Long Wang ◽  
Jing Han ◽  
Li Feng ◽  
...  

Objective As a unique histological subtype of colorectal cancer (CRC), mucinous adenocarcinoma (MC) has a poor prognosis and responds poorly to treatment. Genes and markers related to MC have not been reported. Methods To identify biomarkers involved in development of MC compared with other common adenocarcinoma (AC) subtypes, four datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using GEO2R. A protein–protein interaction network was constructed. Functional annotation for DEGs was performed via DAVID, Metascape, and BiNGO. Significant modules and hub genes were identified using Cytoscape, and expression of hub genes and relationships between hub genes and MC were analyzed. Results The DEGs were mainly enriched in negative regulation of cell proliferation, bicarbonate transport, response to peptide hormone, cell–cell signaling, cell proliferation, and positive regulation of the canonical Wnt signaling pathway. The Venn diagram revealed eight significant hub genes: CXCL9, IDO1, MET, SNAI2, and ZEB2 were highly expressed in MC compared with AC, whereas AREG, TWIST1, and ZEB1 were expressed at a low level. AREG and MET might be significant biomarkers for MC. Conclusion The identified DEGs might help elucidate the pathogenesis of MC, identify potential targets, and improve treatment for CRC.


2021 ◽  
Author(s):  
Mingyi Yang ◽  
Yani Su ◽  
Yao Ma ◽  
Yirixiati Aihaiti ◽  
Peng Xu

Abstract Objective: To study the potential biomarkers and related pathways in osteoarthritis (OA) synovial lesions, and to provide theoretical basis and research directions for the pathogenesis and treatment of OA. Methods: Download the microarray data sets GSE12021 and GSE82107 from Gene Expression Omnibus. GEO2R recognizes differentially expressed genes. Perform functional enrichment analysis of differentially expressed genes and construct protein-protein interaction network. Cytoscape performs module analysis and enrichment analysis of top-level modules. Further identify the Hub gene and perform functional enrichment analysis. TargetScan, miRDB and miRWalk three databases predict the target miRNAs of Hub gene and identify key miRNAs. Results: Finally, 10 Hub genes and 17 key miRNAs related to the progression of OA synovitis were identified. NF1, BTRC and MAPK14 may play a vital role in OA synovial disease. Conclusion: The Hub genes and key miRNAs discovered in this study may be potential biomarkers in the development of OA synovitis, and provide research methods and target basis for the pathogenesis and treatment of OA.


2021 ◽  
Author(s):  
Lele Cao¹ ◽  
Ye Meng¹ ◽  
Rui Huang ◽  
Xiaoxue Wang ◽  
Hui Qin

Abstract Background Multiple myeloma is a hematologic disorder of abnormal plasma cell proliferation. Although there are some agents with different mechanisms in the clinic, the treatment of multiple myeloma is still challenging for the reason that its recurrence and progression are common. Therefore, it is critical to determine novel biomarkers to improve the prognosis of patients. Methods Firstly, raw data of GSE82307 was collected from the Gene Expression Omnibus database. Secondly, the top 50% of most variant genes were employed to construct a gene co-expression network in the R.WGCNA algorithm, and module significance and module membership were utilized to identify hub modules and hub genes respectively. The gene ontology enrichment and Kyoto encyclopedia of genes and genomes pathway analysis were carried out to assess biological characteristics. Then a protein-protein interaction network was conducted based on the STRING website and Cytoscape software. Next, differentially expressed genes were analyzed using the limma R package. Finally, survival analysis was performed by Kaplan–Meier plotter to evaluate prognosis. Results 10826 genes were used to construct a co-expression network. In this network, the blue module was identified as a hub module in which 68 genes were identified as hub genes. Furthermore, 46 differentially expressed genes were screened in samples of GSE82307. Integrating hub genes and differentially expressed genes, we determined 14 key genes. Finally, survival analysis revealed that ten genes CDCA5, CEP55, HJURP, CDC20, FOXM1, RRM2, TTK, CENPE, SKA1, NUF2 were related to the relapse and prognosis of multiple myeloma. Conclusion Our study suggested that CDCA5, CEP55, HJURP, CDC20, FOXM1, RRM2, TTK, CENPE, SKA1, NUF2 may be potential biomarkers for predicting the relapse and prognosis of multiple myeloma.


2020 ◽  
Vol 26 (29) ◽  
pp. 3619-3630
Author(s):  
Saumya Choudhary ◽  
Dibyabhaba Pradhan ◽  
Noor S. Khan ◽  
Harpreet Singh ◽  
George Thomas ◽  
...  

Background: Psoriasis is a chronic immune mediated skin disorder with global prevalence of 0.2- 11.4%. Despite rare mortality, the severity of the disease could be understood by the accompanying comorbidities, that has even led to psychological problems among several patients. The cause and the disease mechanism still remain elusive. Objective: To identify potential therapeutic targets and affecting pathways for better insight of the disease pathogenesis. Method: The gene expression profile GSE13355 and GSE14905 were retrieved from NCBI, Gene Expression Omnibus database. The GEO profiles were integrated and the DEGs of lesional and non-lesional psoriasis skin were identified using the affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes pathways of the DEGs were analyzed using clusterProfiler. Cytoscape, V3.7.1 was utilized to construct protein interaction network and analyze the interactome map of candidate proteins encoded in DEGs. Functionally relevant clusters were detected through Cytohubba and MCODE. Results: A total of 1013 genes were differentially expressed in lesional skin of which 557 were upregulated and 456 were downregulated. Seven dysregulated genes were extracted in non-lesional skin. The disease gene network of these DEGs revealed 75 newly identified differentially expressed gene that might have a role in development and progression of the disease. GO analysis revealed keratinocyte differentiation and positive regulation of cytokine production to be the most enriched biological process and molecular function. Cytokines -cytokine receptor was the most enriched pathways. Among 1013 identified DEGs in lesional group, 36 DEGs were found to have altered genetic signature including IL1B and STAT3 which are also reported as hub genes. CCNB1, CCNA2, CDK1, IL1B, CXCL8, MKI 67, ESR1, UBE2C, STAT1 and STAT3 were top 10 hub gene. Conclusion: The hub genes, genomic altered DEGs and other newly identified differentially dysregulated genes would improve our understanding of psoriasis pathogenesis, moreover, the hub genes could be explored as potential therapeutic targets for psoriasis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao-Liang Xing ◽  
Zhi-Yong Yao ◽  
Chaoqun Xing ◽  
Zhi Huang ◽  
Jing Peng ◽  
...  

Abstract Background Colorectal cancer (CRC) is the second most prevalent cancer, as it accounts for approximately 10% of all annually diagnosed cancers. Studies have indicated that DNA methylation is involved in cancer genesis. The purpose of this study was to investigate the relationships among DNA methylation, gene expression and the tumor-immune microenvironment of CRC, and finally, to identify potential key genes related to immune cell infiltration in CRC. Methods In the present study, we used the ChAMP and DESeq2 packages, correlation analyses, and Cox regression analyses to identify immune-related differentially expressed genes (IR-DEGs) that were correlated with aberrant methylation and to construct a risk assessment model. Results Finally, we found that HSPA1A expression and CCRL2 expression were positively and negatively associated with the risk score of CRC, respectively. Patients in the high-risk group were more positively correlated with some types of tumor-infiltrating immune cells, whereas they were negatively correlated with other tumor-infiltrating immune cells. After the patients were regrouped according to the median risk score, we could more effectively distinguish them based on survival outcome, clinicopathological characteristics, specific tumor-immune infiltration status and highly expressed immune-related biomarkers. Conclusion This study suggested that the risk assessment model constructed by pairing immune-related differentially expressed genes correlated with aberrant DNA methylation could predict the outcome of CRC patients and might help to identify those patients who could benefit from antitumor immunotherapy.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


2020 ◽  
Author(s):  
Chao Xu ◽  
HuiFang Li ◽  
YunPeng Zhang ◽  
TianYu Liu ◽  
Yi Feng

Abstract Background: Neuropathic pain can cause significant physical and economic burden to people, and there are no effective long-term treatment methods for this condition. We conducted a bioinformatics analysis of microarray data to identify related mechanisms to determine strategies for more effective treatments of neuropathic pain.Methods: GSE24982 and GSE63442 microarray datasets were extracted from the Gene Expression Omnibus (GEO) database to analyze transcriptome differences of neuropathic pain in the dorsal root ganglions caused by spinal nerve ligation. We filtered the differentially expressed genes (DEGs) in the two datasets and Webgestalt was applied to conduct GeneOntology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the shared DEGs. String Database and Cytoscape software were used to construct the Protein-Protein Interaction (PPI) network to determine the hub genes, which were subsequently verified in the GSE30691 dataset. Finally, miRDB and miRWalk Databases were used to predict potential miRNA of the selected DEGs.Results: A total of 182 overlapped DEGs were found between GSE24982 and GSE63442 datasets. The GO functional analysis and KEGG enrichment analysis showed that the selected DEGs were mainly enriched in infection, transmembrane transport of ion channels, and synaptic transmission. Combining the results of PPI analysis and the verification of the GSE30691 dataset, we identified seven hub genes related to neuropathic pain (Atf3, Aif1, Ctss, Gfap, Scg2, Jun, and Vgf). Predicted miRNA targeting each selected hub genes were identified.Conclusion: Seven hub genes related to the pathogenesis of neuropathic pain and potential targeting miRNA were identified, expanding understanding of the mechanism of neuropathic pain and facilitating treatment development.


2020 ◽  
Vol 21 (2) ◽  
pp. 147032032091963
Author(s):  
Xiaoxue Chen ◽  
Mindan Sun

Purpose: This study aims to identify immunoglobulin-A-nephropathy-related genes based on microarray data and to investigate novel potential gene targets for immunoglobulin-A-nephropathy treatment. Methods: Immunoglobulin-A-nephropathy chip data was obtained from the Gene Expression Omnibus database, which included 10 immunoglobulin-A-nephropathy and 22 normal samples. We used the limma package of R software to screen differentially expressed genes in immunoglobulin-A-nephropathy and normal glomerular compartment tissues. Functional enrichment (including cellular components, molecular functions, biological processes) and signal pathways were performed for the differentially expressed genes. The online analysis database (STRING) was used to construct the protein-protein interaction networks of differentially expressed genes, and Cytoscape software was used to identify the hub genes of the signal pathway. In addition, we used the Connectivity Map database to predict possible drugs for the treatment of immunoglobulin-A-nephropathy. Results: A total of 348 differentially expressed genes were screened including 107 up-regulated and 241 down-regulated genes. Functional analysis showed that up-regulated differentially expressed genes were mainly concentrated on leukocyte migration, and the down-regulated differentially expressed genes were significantly enriched in alpha-amino acid metabolic process. A total of six hub genes were obtained: JUN, C3AR1, FN1, AGT, FOS, and SUCNR1. The small-molecule drugs thapsigargin, ciclopirox and ikarugamycin were predicted therapeutic targets against immunoglobulin-A-nephropathy. Conclusion: Differentially expressed genes and hub genes can contribute to understanding the molecular mechanism of immunoglobulin-A-nephropathy and providing potential therapeutic targets and drugs for the diagnosis and treatment of immunoglobulin-A-nephropathy.


Vascular ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 643-654 ◽  
Author(s):  
Jing Xu ◽  
Yuejin Yang

Objective Atherosclerosis is a chronic inflammatory process characterized by the accumulation and formation of lipid-rich plaques within the layers of the arterial wall. Although numerous studies have reported the underlying pathogenesis, no data-based studies have been conducted to analyze the potential genes and immune cells infiltration in the different stages of atherosclerosis via bioinformatics analysis. Methods In this study, we downloaded GSE100927 and GSE28829 from NCBI-GEO database. Gene ontology and pathway enrichment were performed via the DAVID database. The protein interaction network was constructed via STRING. Enriched hub genes were analyzed by the Cytoscape software. The evaluation of the infiltrating immune cells in the dataset samples was performed by the CIBERSORT algorithm. Results We identified 114 common upregulated differentially expressed genes and 22 common downregulated differentially expressed genes. (adjust p value < 0.01 and log FC ≥ 1). A cluster of 10 genes including CYBA, SLC11A1, FCER1G, ITGAM, ITGB2, CD53, ITGAX, VAMP8, CLEC5A, and CD300A were found to be significant. Through the deconvolution algorithm CIBERSORT, we analyzed the significant alteration of immune cells infiltration in the progression of atherosclerosis with the threshold of the Wilcoxon test at p value <0.05. Conclusions These results may reveal the underlying correlations between genes and immune cells in atherosclerosis, which enable us to investigate the novel insights for the development of treatments and drugs.


Sign in / Sign up

Export Citation Format

Share Document