scholarly journals Portfolio Optimization with Asset-Liability Ratio Regulation Constraints

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
De-Lei Sheng ◽  
Peilong Shen

This paper considers both a top regulation bound and a bottom regulation bound imposed on the asset-liability ratio at the regulatory time T to reduce risks of abnormal high-speed growth of asset price within a short period of time (or high investment leverage), and to mitigate risks of low assets’ return (or a sharp fall). Applying the stochastic optimal control technique, a Hamilton–Jacobi–Bellman (HJB) equation is derived. Then, the effective investment strategy and the minimum variance are obtained explicitly by using the Lagrange duality method. Moreover, some numerical examples are provided to verify the effectiveness of our results.

2021 ◽  
Vol 13 (11) ◽  
pp. 6456
Author(s):  
Ziqi Liu ◽  
Ming Zhang ◽  
Liwen Liu

There have been growing concerns around the world over the rising spatial inequality (SI) amid fast and vast globalization. This paper presents an effort to benchmark the conditions and trends of spatial inequality in 37 megaregions in the United States, Europe, and China. Furthermore, the study selected three megaregion examples and analyzed the effect of developing high-speed rail (HSR) as an infrastructure investment strategy on reshaping the spatial pattern of job accessibility. The study measures spatial inequality with the Theil index of gross regional product and with the rank-size coefficient of polycentricity. Results show that spatial inequality exists and varies in magnitude within and between megaregions. On average, Chinese megaregions exhibited the level of spatial inequality about two times or more of those in the U.S. and European megaregions. The decade between 2006 and 2016 saw a decrease in the Theil index measure of megaregional inequality in China, but a slight increase in the United States and Europe. Fast growing megaregions exhibit high levels and rising trends of spatial inequality regardless of the country or continent setting. HSR helps improve mobility and accessibility; yet the extent to which HSR reduces spatial inequality is context dependent. This study presents a first attempt to assess and compare the spatial inequality conditions and trajectories in world megaregions aiming at promoting international learning.


Author(s):  
Mitsugu Yamaguchi ◽  
Tatsuaki Furumoto ◽  
Shuuji Inagaki ◽  
Masao Tsuji ◽  
Yoshiki Ochiai ◽  
...  

AbstractIn die-casting and injection molding, a conformal cooling channel is applied inside the dies and molds to reduce the cycle time. When the internal face of the channel is rough, both cooling performance and tool life are negatively affected. Many methods for finishing the internal face of such channels have been proposed. However, the effects of the channel diameter on the flow of a low-viscosity finishing media and its finishing characteristics for H13 steel have not yet been reported in the literature. This study addresses these deficiencies through the following: the fluid flow in a channel was computationally simulated; the flow behavior of abrasive grains was observed using a high-speed camera; and the internal face of the channel was finished using the flow of a fluid containing abrasive grains. The flow velocity of the fluid with the abrasive grains increases as the channel diameter decreases, and the velocity gradient is low throughout the channel. This enables reduction in the surface roughness for a short period and ensures uniform finishing in the central region of the channel; however, over polishing occurs owing to the centrifugal force generated in the entrance region, which causes the form accuracy of the channel to partially deteriorate. The outcomes of this study demonstrate that the observational finding for the finishing process is consistent with the flow simulation results. The flow simulation can be instrumental in designing channel diameters and internal pressures to ensure efficient and uniform finishing for such channels.


Author(s):  
Yefei Liu ◽  
Yang Liu ◽  
Xingtuan Yang ◽  
Liqiang Pan

Series of experiments are conducted in a single microchannel, where subcooled water flows upward inside a transparent and vertical microchannel. The cross section of the channel is rectangle with the hydraulic diameter of 2.8mm and the aspect ratio of 20. The working fluid is 3–15K subcooled and surface heat flux on the channel is between 0–3.64 kW/m2, among which two-phase instability at low vapor quantity may occur. By using a novel transparent heating technique and a high-speed camera, visualization results are obtained. The parameters are acquired with a National Instruments Data Acquisition card. In the experiments, long-period oscillation and short-period oscillation are observed as the primary types of instability in a microchannel. Instability characteristics represented from signals correspond well with the flow pattern. Moreover, effects of several parameters are investigated. The results indicate that the oscillating period generally increases with the heat flux density and decreases with inlet subcooling, while the effects of inlet resistance are more complex.


Author(s):  
Richard Beblo ◽  
Darrel Robertson ◽  
James Joo ◽  
Brian Smyers ◽  
Gregory Reich

Reconfigurable structures such as morphing aircraft generally require an on board energy source to function. Frictional heating during the high speed deployment of a blunt nosed low speed reconnaissance air vehicle can provide a large amount of thermal energy during a short period of time. This thermal energy can be collected, transferred, and utilized to reconfigure the deployable aircraft. Direct utilization of thermal energy has the ability to significantly decrease or eliminate the losses associated with converting thermal energy to other forms, such as electric. The following work attempts to describe possible system designs and components that can be utilized to transfer the thermal energy harvested at the nose of the aircraft during deployment to internal components for direct thermal actuation of a reconfigurable wing structure. A model of a loop heat pipe is presented and used to predict the time dependant transfer of energy. Previously reported thermal profiles of the nose of the aircraft calculated based on trajectory and mechanical analysis of the actuation mechanism are reviewed and combined with the model of the thermal transport system providing a system level feasibility investigation and design tool. The efficiency, implementation, benefits, and limitations of the direct use thermal system are discussed and compared with currently utilized systems.


2016 ◽  
Vol 4 (3) ◽  
pp. 244-257
Author(s):  
Delei Sheng

AbstractThis paper considers the reinsurance-investment problem for an insurer with dynamic income to balance the profit of insurance company and policy-holders. The insurer’s dynamic income is given by a net premium minus a dynamic reward budget item and the net premium is obtained according to the expected premium principle. Applying the stochastic control technique, a Hamilton-Jacobi-Bellman equation is established under stochastic interest rate model and the explicit solution is obtained by maximizing the insurer’s power utility of terminal wealth. In addition, the comparison with corresponding results under constant interest rate helps us to understand the role and influence of stochastic interest rates more in-depth.


2020 ◽  
Author(s):  
Rosa Maria Badani Prado ◽  
Satish Mishra ◽  
Buckston Morgan ◽  
Rangana Wijayapala ◽  
Seyed Meysam Hashemnejad ◽  
...  

Many biological species apply the power amplification mechanism for locomotion, feeding, and protection. In power amplification, a biological system rapidly releases stored-energy by achieving a very high velocity over a short period of time, resulting in high power output. Such power amplification allows insects such as locust to jump and Mantis shrimp to kill prey by its appendage strike. Biological elastomeric polymers such as resilin play a vital role in the power amplification process because of their high stretchability and resilience. In synthetic materials, although<br>crosslinked rubbers display high stretchability and resilience, such is difficult to achieve in the water-containing systems such as in hydrogels, commonly considered materials for mimicking biological tissues. Here, we have used a simple free-radical polymerization of acrylic acid (AAc), methacrylamide (MAAm), and polypropylene glycol diacrylate (PPGDA) to obtain hydrogels. In these gels, the polymerized AAc and MAAm act as hydrophilic blocks and PPG as hydrophobic, and the gel structure resemble that of resilin consisting of hydrophilic and hydrophobic components. The bioinspired gels display very high stretchability, as high as eight times the original length, and greater than 90% resilience. In addition, the gel samples can reach a retraction velocity of 16 m/s with an acceleration of 4X10^3 m/s2. These values are similar or better than those observed in water containing biological systems, such as appendage strikes in Mantis shrimp, etc. To the best of our knowledge, such performance has not been reported in the<br>literature for any water containing networks.


2020 ◽  
Vol 14 (27) ◽  
pp. 55-66
Author(s):  
Hugo Leonardo Murcia Gallo ◽  
Richard Lionel Luco Salman ◽  
David Ignacio Fuentes Montaña

The main objective of this study is to analyze the structural response of a boat during a slamming event using the Finite Element Method in a Small Water Area Twin Hull (SWATH) type boat.  In the mentioned load condition, the acceptance criteria established by a classification society must be fulfilled, taking into account the areas where this event affects the structure such as the junction deck, the pontoons and other structural members established by the standard, all this generated by the high pressure loads in the ship's structure in a very short period of time being an element of study in this type of vessels, as long as they are within the range of high speed vessels. Among the main results of this study were the deformations and stresses in the structure obtained under the reference parameters of the classification society.


2006 ◽  
Vol 96 (2) ◽  
pp. 642-651 ◽  
Author(s):  
Turgay Akay ◽  
Hernish J. Acharya ◽  
Karim Fouad ◽  
Keir G. Pearson

EphA4 receptors play an important role in axon guidance during development. Disrupting the expression of these receptors in mice has been shown to modify neuronal connections in the spinal cord and results in the production of a characteristic hopping gait. The EphA4-null mouse has been used in numerous investigations aimed at establishing mechanisms responsible for patterning motor activity during walking. However, there have been no detailed behavioral or electrophysiological studies on adult EphA4-null mice. We used high-speed video recordings to determine the coordination of leg movements during locomotion in adult EphA4-null mice. Our data show that the hopping movements of the hind legs are not always associated with synchronous movements of forelegs. The coupling between the forelegs is weak, resulting in changes in their phase relationship from step to step. The synchronous coordination of the hind legs can switch to an alternating pattern for a short period of time during recovery from isoflurane anesthesia. Comparison of the kinematics of hind leg movements in EphA4-null mice and wild-type animals shows that besides the synchronous coordination in EphA4-null mice, the swing durations and the swing amplitude are shorter. Electromyographic recordings from a knee extensor muscle show double bursting in the EphA4-null animals but single bursts in wild types. This double burst changes to single-burst activity during swimming and when hind legs are stepping in alternation. These observations suggest an influence of sensory feedback in shaping the pattern of muscle activity during locomotion in the mutant animals. Our data give the first detailed description of the locomotor behavior of an adult mouse with genetically manipulated spinal networks.


2019 ◽  
Vol 15 (2) ◽  
pp. 246-255
Author(s):  
Tri Ratna Bajracharya ◽  
Rajendra Shrestha ◽  
Ashesh Babu Timilsina

 Pelton turbine is a high head-impulse type turbine. The high-speed jet strikes the symmetrical semi ellipsoidal buckets, thus transferring the momentum within short period of time, impulse. The conversion of potential energy of water to kinetic energy in the form of jet is done by a nozzle with internally fitted spear or needle, the assembly in known as injector. The jet quality includes but is not limited to jet velocity, velocity distribution ‘velocity profile’, core location etc. In this study, the modeling of flow in Pelton turbine injector is done by commercial Computational Fluid Dynamics (CFD) solver on a three-dimensional flow domain. The results obtained from CFD modelling are then compared against the experimental observations and previously published literatures. The jet streamline, jet velocity profile and jet core location are then studied. As observed experimentally, the mean jet diameter reduces as the nozzle opening decreases. In addition, like the experimental observations, the jet first contracts and then expands. The diameter of the contraction is then normalized with nozzle exit diameter and is plotted for both experimental observations as well as the results of the numerical simulation. The maximum error between experimental and numerical analysis of jet contraction is 20%. The jet core is located at region axially ahead of needle tip.


Sign in / Sign up

Export Citation Format

Share Document