scholarly journals Internal face finishing for a cooling channel using a fluid containing free abrasive grains

Author(s):  
Mitsugu Yamaguchi ◽  
Tatsuaki Furumoto ◽  
Shuuji Inagaki ◽  
Masao Tsuji ◽  
Yoshiki Ochiai ◽  
...  

AbstractIn die-casting and injection molding, a conformal cooling channel is applied inside the dies and molds to reduce the cycle time. When the internal face of the channel is rough, both cooling performance and tool life are negatively affected. Many methods for finishing the internal face of such channels have been proposed. However, the effects of the channel diameter on the flow of a low-viscosity finishing media and its finishing characteristics for H13 steel have not yet been reported in the literature. This study addresses these deficiencies through the following: the fluid flow in a channel was computationally simulated; the flow behavior of abrasive grains was observed using a high-speed camera; and the internal face of the channel was finished using the flow of a fluid containing abrasive grains. The flow velocity of the fluid with the abrasive grains increases as the channel diameter decreases, and the velocity gradient is low throughout the channel. This enables reduction in the surface roughness for a short period and ensures uniform finishing in the central region of the channel; however, over polishing occurs owing to the centrifugal force generated in the entrance region, which causes the form accuracy of the channel to partially deteriorate. The outcomes of this study demonstrate that the observational finding for the finishing process is consistent with the flow simulation results. The flow simulation can be instrumental in designing channel diameters and internal pressures to ensure efficient and uniform finishing for such channels.

2020 ◽  
Author(s):  
Hua Liu ◽  
Florian Dangl ◽  
Thomas Lohner ◽  
Karsten Stahl

Abstract Gearbox lubrication plays a decisive role in both load capacity and efficiency. It is necessary for the formation of a lubricant film in tribological contacts, and for heat dissipation. Grease lubrication is often applied to gearboxes at a low operating speed and means that, for example, less effort is required in sealing design compared to oil lubrication. Over the years, the computational fluid dynamics (CFD) method has frequently been applied to support the lubrication-related design of gearboxes. However, very few studies have focused on grease lubrication. Whereas oil can generally be considered as Newtonian fluid, grease displays complex non-Newtonian flow behavior. In this study, the grease lubrication of a single-stage test gearbox is investigated by means of a finite-volume based CFD model. The numerical results on the grease flow show good accordance with high-speed camera recordings, and clearly display the lubrication mechanisms of “channeling” and “circulating”. These first results on grease flow simulation in gearboxes offer a starting point for further numerical studies.


2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


2021 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Tianbing He ◽  
Nevaf Ciftci ◽  
Volker Uhlenwinkel ◽  
Sergio Scudino

The critical cooling rate necessary for glass formation via melt solidification poses inherent constraints on sample size using conventional casting techniques. This drawback can be overcome by pressure-assisted sintering of metallic glass powders at temperatures above the glass transition, where the material shows viscous-flow behavior. Partial crystallization during sintering usually exacerbates the inherent brittleness of metallic glasses and thus needs to be avoided. In order to achieve high density of the bulk specimens while avoiding (or minimizing) crystallization, the optimal combination between low viscosity and long incubation time for crystallization must be identified. Here, by carefully selecting the time–temperature window for powder consolidation, we synthesized highly dense Zr48Cu36Ag8Al8 bulk metallic glass (BMG) with mechanical properties comparable with its cast counterpart. The larger ZrCu-based BMG specimens fabricated in this work could then be post-processed by flash-annealing, offering the possibility to fabricate monolithic metallic glasses and glass–matrix composites with enhanced room-temperature plastic deformation.


2021 ◽  
Author(s):  
Yiwei Feng ◽  
Tiegang Liu ◽  
Xiaofeng He ◽  
Bin Zhang ◽  
Kun Wang

Abstract In this work, we extend the characteristic-featured shock wave indicator based on artificial neuron training to 3D high-speed flow simulation on unstructured mesh. The extension is achieved through dimension splitting. This leads to that the proposed indicator is capable of identifying regions of flow compression in any direction. With this capability, the indicator is further developed to combine with h-adaptivity of mesh refinement to improve resolution with less computational costs. The present indicator provided an attractive alternative for constructing high-resolution, high-efficiency shock-processing method to simulate high-speed inviscid flows.


2019 ◽  
Vol 109 (01-02) ◽  
pp. 30-34
Author(s):  
D. Müller ◽  
B. Kirsch ◽  
J. C. Aurich

Die Kühlschmiereffizienz von innengekühlten Bohrern lässt sich durch eine Optimierung der Kühlkanalaustrittsbedingungen steigern. In dem Beitrag wird der Einfluss des Kühlkanaldurchmessers und des zweiten Freiwinkels auf den Bohrprozess mittels VHM (Vollhartmetall)-Wendelbohrern, welche auf Basis einer numerischen Simulation ausgelegt wurden, experimentell untersucht. Es wird gezeigt, dass im Besonderen der Kühlkanaldurchmesser einen Einfluss auf die Kühlung hat.   The cooling lubricant efficiency of internally cooled drills can be increased by optimizing the cooling channel outlet conditions. In this paper, the influence of the cooling channel diameter and the second tool orthogonal clearance on the drilling process is experimentally investigated using cemented carbide drills based on numerical simulations. It will be shown that the cooling channel diameter in particular has an influence on cooling lubrication.


2021 ◽  
Vol 143 (12) ◽  
Author(s):  
Leoluca Scurria ◽  
Tommaso Tamarozzi ◽  
Oleg Voronkov ◽  
Dieter Fauconnier

Abstract When simulating elastohydrodynamic lubrication, two main approaches are usually followed to predict the pressure and fluid film thickness distribution throughout the contact. The conventional approach relies on the Reynolds equation to describe the thin lubricant film, which is coupled to a Boussinesq description of the linear elastic deformation of the solids. A more accurate, yet a time-consuming method is the use of computational fluid dynamics in which the Navier–Stokes equations describe the flow of the thin lubricant film, coupled to a finite element solver for the description of the local contact deformation. This investigation aims at assessing both methods for different lubrication conditions in different elastohydrodynamic lubrication (EHL) regimes and quantify their differences to understand advantages and limitations of both methods. This investigation shows how the results from both approaches deviate for three scenarios: (1) inertial contributions (Re > 1), i.e., thick films, high speed, and low viscosity; (2) high shear stresses leading to secondary flows; and (3) large deformations of the solids leading to inaccuracies of the Boussinesq equation.


Author(s):  
Manuel Gomes Correia ◽  
Célio Maschio ◽  
Denis José Schiozer

Super-giant carbonate fields, such as Ghawar, in Saudi Arabia, and Lula, at the Brazilian pre-salt, show highly heterogeneous behavior that is linked to high permeability intervals in thin layers. This article applies Local Grid Refinements (LGR) integrated with upscaling procedures to improve the representation of highly laminated reservoirs in flow simulation by preserving the static properties and dynamic trends from geological model. This work was developed in five main steps: (1) define a conventional coarse grid, (2) define LGR in the conventional coarse grid according to super-k and well locations, (3) apply an upscaling procedure for all scenarios, (4) define LGR directly in the simulation model, without integrate geological trends in LGR and (5) compare the dynamic response for all cases. To check results and compare upscaling matches, was used the benchmark model UNISIM-II-R, a refined model based on a combination of Brazilian Pre-salt and Ghawar field information. The main results show that the upscaling of geological models for coarse grid with LGR in highly permeable thin layers provides a close dynamic representation of geological characterization compared to conventional coarse grid and LGR only near-wells. Pseudo-relative permeability curves should be considered for (a) conventional coarse grid or (b) LGR scenarios under dual-medium flow simulations as the upscaling of discrete fracture networks and dual-medium flow models presents several limitations. The conventional approach of LGR directly in simulation model, presents worse results than LGR integrated with upscaling procedures as the extrapolation of dynamic properties to the coarse block mismatch the dynamic behavior from geological characterization. This work suggests further improvements for results for upscaling procedures that mask the flow behavior in highly laminated reservoirs.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Zhenglun Alan Wei ◽  
Zhongquan Charlie Zheng ◽  
Xiaofan Yang

A parallel implementation of an immersed-boundary (IB) method is presented for low Reynolds number flow simulations in a representative elementary volume (REV) of porous media that are composed of a periodic array of regularly arranged structures. The material of the structure in the REV can be solid (impermeable) or microporous (permeable). Flows both outside and inside the microporous media are computed simultaneously by using an IB method to solve a combination of the Navier–Stokes equation (outside the microporous medium) and the Zwikker–Kosten equation (inside the microporous medium). The numerical simulation is firstly validated using flow through the REVs of impermeable structures, including square rods, circular rods, cubes, and spheres. The resultant pressure gradient over the REVs is compared with analytical solutions of the Ergun equation or Darcy–Forchheimer law. The good agreements demonstrate the validity of the numerical method to simulate the macroscopic flow behavior in porous media. In addition, with the assistance of a scientific parallel computational library, PETSc, good parallel performances are achieved. Finally, the IB method is extended to simulate species transport by coupling with the REV flow simulation. The species sorption behaviors in an REV with impermeable/solid and permeable/microporous materials are then studied.


Author(s):  
Yefei Liu ◽  
Yang Liu ◽  
Xingtuan Yang ◽  
Liqiang Pan

Series of experiments are conducted in a single microchannel, where subcooled water flows upward inside a transparent and vertical microchannel. The cross section of the channel is rectangle with the hydraulic diameter of 2.8mm and the aspect ratio of 20. The working fluid is 3–15K subcooled and surface heat flux on the channel is between 0–3.64 kW/m2, among which two-phase instability at low vapor quantity may occur. By using a novel transparent heating technique and a high-speed camera, visualization results are obtained. The parameters are acquired with a National Instruments Data Acquisition card. In the experiments, long-period oscillation and short-period oscillation are observed as the primary types of instability in a microchannel. Instability characteristics represented from signals correspond well with the flow pattern. Moreover, effects of several parameters are investigated. The results indicate that the oscillating period generally increases with the heat flux density and decreases with inlet subcooling, while the effects of inlet resistance are more complex.


Sign in / Sign up

Export Citation Format

Share Document