scholarly journals Vibration Analysis of Shaft Misalignment Using Machine Learning Approach under Variable Load Conditions

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
A. M. Umbrajkaar ◽  
A. Krishnamoorthy ◽  
R. B. Dhumale

The Industry 4.0 revolution is insisting strongly for use of machine learning-based processes and condition monitoring. In this paper, emphasis is given on machine learning-based approach for condition monitoring of shaft misalignment. This work highlights combined approach of artificial neural network and support vector machine for identification and measure of shaft misalignment. The measure of misalignment requires more features to be extracted under variable load conditions. Hence, primary objective is to measure misalignment with a minimum number of extracted features. This is achieved through normalization of vibration signal. An experimental setup is prepared to collect the required vibration signals. The normalized time domain nonstationary signals are given to discrete wavelet transform for features extraction. The extracted features such as detailed coefficient is considered for feature selection viz. Skewness, Kurtosis, Max, Min, Root mean square, and Entropy. The ReliefF algorithm is used to decide best feature on rank basis. The ratio of maximum energy to Shannon entropy is used in wavelet selection. The best feature is used to train machine learning algorithm. The rank-based feature selection has improved classification accuracy of support vector machine. The result obtained with the combined approach are discussed for different misalignment conditions.

2019 ◽  
Vol 10 (1) ◽  
pp. 47-54
Author(s):  
Abdullah Jafari Chashmi ◽  
Mehdi Chehel Amirani

Abstract Primary recognition of heart diseases by exploiting computer aided diagnosis (CAD) machines, decreases the vast rate of fatality among cardiac patients. Recognition of heart abnormalities is a staggering task because the low changes in ECG signals may not be exactly specified with eyesight. In this paper, an efficient approach for ECG arrhythmia diagnosis is proposed based on a combination of discrete wavelet transform and higher order statistics feature extraction and entropy based feature selection methods. Using the neural network and support vector machine, five classes of heartbeat categories are classified. Applying the neural network and support vector machine method, our proposed system is able to classify the arrhythmia classes with high accuracy (99.83%) and (99.03%), respectively. The advantage of the presented procedure has been experimentally demonstrated compared to the other recently presented methods in terms of accuracy.


Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Hendra Saputra ◽  
Setio Basuki ◽  
Mahar Faiqurahman

AbstrakPertumbuhan Malware Android telah meningkat secara signifikan seiring dengan majunya jaman dan meninggkatnya keragaman teknik dalam pengembangan Android. Teknik Machine Learning adalah metode yang saat ini bisa kita gunakan dalam memodelkan pola fitur statis dan dinamis dari Malware Android. Dalam tingkat keakurasian dari klasifikasi jenis Malware peneliti menghubungkan antara fitur aplikasi dengan fitur yang dibutuhkan dari setiap jenis kategori Malware. Kategori jenis Malware yang digunakan merupakan jenis Malware yang banyak beredar saat ini. Untuk mengklasifikasi jenis Malware pada penelitian ini digunakan Support Vector Machine (SVM). Jenis SVM yang akan digunakan adalah class SVM one against one menggunakan Kernel RBF. Fitur yang akan dipakai dalam klasifikasi ini adalah Permission dan Broadcast Receiver. Untuk meningkatkan akurasi dari hasil klasifikasi pada penelitian ini digunakan metode Seleksi Fitur. Seleksi Fitur yang digunakan ialah Correlation-based Feature  Selection (CSF), Gain Ratio (GR) dan Chi-Square (CHI). Hasil dari Seleksi Fitur akan di evaluasi bersama dengan hasil yang tidak menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur CFS menghasilkan akurasi sebesar 90.83% , GR dan CHI sebesar 91.25% dan data yang tidak menggunakan Seleksi Fitur sebesar 91.67%. Hasil dari pengujian menunjukan bahwa Permission dan Broadcast Receiver bisa digunakan dalam mengklasifikasi jenis Malware, akan tetapi metode Seleksi Fitur yang digunakan mempunyai akurasi yang berada sedikit dibawah data yang tidak menggunakan Seleksi Fitur. Kata kunci: klasifikasi malware android, seleksi fitur, SVM dan multi class SVM one agains one  Abstract Android Malware has growth significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each types of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type wiil be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used are Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). Result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicate that permission and broadcast receiver can be used in classyfing type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection. Keywords: Classification Android Malware, Feature Selection, SVM and Multi Class SVM one against one


2020 ◽  
Vol 8 (6) ◽  
pp. 2862-2867

E-commerce is a website or mobile application platform that help people to buy products. Before purchasing the product, customer will decide to buy it or not by reading the review from previous buyer. There is a problem that there are a lot of review so it will take a long time for customer to read it all. This research will be using sentiment analysis method to classify the review data. Sentiment analysis or opinion mining is a machine learning approach to classify and analyse texts or documents about human’s sentiments, emotions, and opinions. In this research, sentiment analysis was used to classify product reviews from e-commerce websites into positive or negative classes. The results could be processed further and be used to summarize customers' opinions about a certain product without reading every single review. The goal of this research is to optimize classification performance by using feature selection technique. Terms Frequency-Inverse Document Frequency (TF-IDF) feature extraction, Backward Elimination feature selection, and five different classifiers (Naïve Bayes, Support Vector Machine, K-Nearest Neighbour, Decision Tree, Random Forest) were used in analysing the sentiment of the reviews. In this research, the dataset used are Indonesian language and classified into two classes(positive and negative). The best accuracy is achieved by using TF-IDF, Backward Elimination and Support Vector Machine (SVM) with a score of 85.97%, which increases by 7.91% if compared to the process without feature selection. Based on the results, Backward Elimination feature selection succeeded in improving all performance for all classifiers used in this research.


2021 ◽  
Vol 7 ◽  
pp. e390
Author(s):  
Shafaq Abbas ◽  
Zunera Jalil ◽  
Abdul Rehman Javed ◽  
Iqra Batool ◽  
Mohammad Zubair Khan ◽  
...  

Breast cancer is one of the leading causes of death in the current age. It often results in subpar living conditions for a patient as they have to go through expensive and painful treatments to fight this cancer. One in eight women all over the world is affected by this disease. Almost half a million women annually do not survive this fight and die from this disease. Machine learning algorithms have proven to outperform all existing solutions for the prediction of breast cancer using models built on the previously available data. In this paper, a novel approach named BCD-WERT is proposed that utilizes the Extremely Randomized Tree and Whale Optimization Algorithm (WOA) for efficient feature selection and classification. WOA reduces the dimensionality of the dataset and extracts the relevant features for accurate classification. Experimental results on state-of-the-art comprehensive dataset demonstrated improved performance in comparison with eight other machine learning algorithms: Support Vector Machine (SVM), Random Forest, Kernel Support Vector Machine, Decision Tree, Logistic Regression, Stochastic Gradient Descent, Gaussian Naive Bayes and k-Nearest Neighbor. BCD-WERT outperformed all with the highest accuracy rate of 99.30% followed by SVM achieving 98.60% accuracy. Experimental results also reveal the effectiveness of feature selection techniques in improving prediction accuracy.


Author(s):  
Akshya Yadav ◽  
Imlikumla Jamir ◽  
Raj Rajeshwari Jain ◽  
Mayank Sohani

Cancer has been characterized as one of the leading diseases that cause death in humans. Breast cancer, being a subtype of cancer, causes death in one out of every eight women worldwide. The solution to counter this is by conducting early and accurate diagnosis for faster treatment. To achieve such accuracy in a short span of time proves difficult with existing techniques. Also, the medical tests conducted in hospitals for detecting cancer is expensive and is difficult for any common man to afford. To counter these problems, in this paper, we use the concept of applying Support Vector machine a Machine Learning algorithm to predict whether a person is prone to breast cancer. We evaluate the performance of this algorithm by calculating its accuracy and apply a min-max scaling method so as to counter and overcome the problem of overfitting and outliers. After scaling of the dataset, we apply a feature selection method called Principle component analysis to improve the algorithms accuracy by decreasing the number of parameters. The final algorithm has improved accuracy with the absence of overfitting and outliers, thus this algorithm can be used to develop and build systems that can be deployed in clinics, hospitals and medical centers for early and quick diagnosis of breast cancer. The training dataset is from the University of Wisconsin (UCI) Machine Learning Repository which is used to evaluate the performance of the Support vector machine by calculating its accuracy.


Author(s):  
Mushtaq Talb Tally ◽  
Haleh Amintoosi

With the development of web applications nowadays, intrusions represent a crucial aspect in terms of violating the security policies. Intrusions can be defined as a specific change in the normal behavior of the network operations that intended to violate the security policies of a particular network and affect its performance. Recently, several researchers have examined the capabilities of machine learning techniques in terms of detecting intrusions. One of the important issues behind using the machine learning techniques lies on employing proper set of features. Since the literature has shown diversity of feature types, there is a vital demand to apply a feature selection approach in order to identify the most appropriate features for intrusion detection. This study aims to propose a hybrid method of Genetic Algorithm and Support Vector Machine. GA has been as a feature selection in order to select the best features, while SVM has been used as a classification method to categorize the behavior into normal and intrusion based on the selected features from GA. A benchmark dataset of intrusions (NSS-KDD) has been in the experiment. In addition, the proposed method has been compared with the traditional SVM. Results showed that GA has significantly improved the SVM classification by achieving 0.927 of f-measure.


Author(s):  
Howida Abuabker Alkaaf ◽  
Aida Ali ◽  
Siti Mariyam Shamsuddin ◽  
Shafaatunnur Hassan

<span>The fast development of mobile apps and its usage has led to increase the risk of exploiting user privacy. One method used in Android security mechanism is permission control that restricts the access of apps to core facilities of devices. However, that permissions could be exploited by attackers when granting certain combinations of permissions. So, the aim of this paper is to explore the pattern of malware apps based on analyzing permissions by proposing framework utilizing feature selection based on ensemble extra tree classifier method and machine learning classifier. The used dataset had 25458 samples (8643 malware apps &amp; 16815 benign apps) with 173 features. Three dataset with 25458 samples and 5, 10 and 20 features respectively were generated after using the proposed feature selection method. All the dataset was fed to machine learning. Support Vector machine (SVM), K Neighbors Classifier, Decision Tree, Naïve bayes and Multilayer Perceptron (MLP) classifiers were used. The classifiers models were evaluated using true negative rate (TNR), false positive rate (FNR) and accuracy metrics. The experimental results obtained showed that Support Vector machine and KNeighbors Classifiers with 20 features achieved the highest accuracy with 94 % and TNR with rate of 89 % using KNeighbors Classifier. The FNR rate is dropped to 0.001 using 5 features with support vector machine (SVM) and Multilayer Perceptrons (MLP) classifiers. The result indicated that reducing permission features improved the performance of classification and reduced the computational overhead.</span>


Sign in / Sign up

Export Citation Format

Share Document