scholarly journals CD40 Signaling Promotes CXCR5 Expression in B Cells via Noncanonical NF-κB Pathway Activation

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Chuan Wei ◽  
Ying Chen ◽  
Lei Xu ◽  
Beibei Yu ◽  
Di Lu ◽  
...  

Chemokine receptor CXCR5-mediated control of B cell trafficking in the lymphoid tissues plays a central role in orchestrating the B cell function, which not only guides the colocalization of B cells with follicular helper T cells in the follicular mantle zone but also determines the position of germinal center dark and light zones. However, the mechanisms that regulate the expression of CXCR5 in B cells remain unclear. Here, we show that the expression level of CXCR5 in B cells was substantially reduced in vitro culture conditions, while being maintained in the presence of CD40 signals. Furthermore, CD40 signaling promotes CXCR5 expression in B cells at least partially through noncanonical NF-κB signaling pathway activation. However, other non-B cells also contributed to the optimal expression of CXCR5 in B cells through cell-cell contact and cytokine secretion. Our findings suggest that CD40 signaling-mediated activation of the noncanonical NF-κB pathway promotes the expression of CXCR5 in a B cell-intrinsic way to orchestrate the trafficking of B cells.

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhe-Zheng Wang ◽  
Jia Song ◽  
Hai Wang ◽  
Jing-Xian Li ◽  
Qiao Xiao ◽  
...  

Ectopic lymphoid tissues (eLTs) characterized by B cell aggregation contribute to the local immunoglobulin production in nasal polyps (NPs). B cell-activating factor (BAFF) is vital for B cell survival, proliferation, and maturation. The purpose of this study is to investigate whether BAFF is involved in the B cell survival and eLT formation in NPs. The mRNA and protein levels of BAFF in NP tissues with and without eLTs were detected by PCR and ELISA assay, respectively. The cellular sources of BAFF and active caspase-3-positive B cells in NPs were studied by immunofluorescence staining. B cells purified from NP tissues were stimulated with BAFF and were analyzed by flow cytometry. Stromal cells purified from NP tissues were stimulated with lymphotoxin (LT) α1β2, and BAFF levels in culture supernatants were analyzed by ELISA. Compared with those in control tissues and NPs without eLTs, the BAFF levels were elevated in NPs with eLTs. Abundant BAFF-positive cells and few active caspase-3-positive apoptotic B cells were found in NPs with eLTs, in contrast to those in NPs without eLTs. There was a negative correlation between the numbers of BAFF-positive cells and frequencies of apoptotic B cells in total B cells in NP tissues. BAFF protected nasal polyp B cells from apoptosis in vitro. Stromal cells were an important cellular source of BAFF in NPs with eLTs. LTα1β2 induced BAFF production from nasal stromal cells in vitro. We propose that BAFF contribute to eLT formation in NPs by promoting B cell survival.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1245-1254 ◽  
Author(s):  
N Chirmule ◽  
N Oyaizu ◽  
VS Kalyanaraman ◽  
S Pahwa

Abstract Despite the occurrence of hypergammaglobulinemia in human immunodeficiency virus (HIV) infection, specific antibody production and in vitro B-cell differentiation responses are frequently impaired. In this study, we have examined the effects of HIV envelope glycoprotein gp120 on T-helper cell function for B cells. In the culture system used, B-cell functional responses were dependent on T-B- cell contact, since separation of T and B cells in double chambers by Transwell membranes rendered the B cells unresponsive in assays of antigen-induced B-cell proliferation and differentiation. Cytokines secreted by T cells were also essential, since anti-CD3 monoclonal antibody (mAb)-activated, paraformaldehyde-fixed T-cell clones failed to induce B-cell proliferation and differentiation. Pretreatment of the CD4+ antigen-specific T cells with gp120 was found to impair their ability to help autologous B cells, as determined by B-cell proliferation, polyclonal IgG secretion, and antigen-specific IgG secretion. The gp120-induced inhibition was specific in that it was blocked by soluble CD4. Furthermore, only fractionated small B cells (which are T-cell-dependent in their function) manifested impaired responses when cultured with gp120-treated T cells. Antigen-induced interleukin (IL)-2 and IL-4, but not IL-6, secretion were markedly reduced in gp120-treated T-cell clones. Addition of exogenous cytokines failed to compensate for defective helper function of gp120-treated T cells. The findings in this study indicate that gp120 impairs helper functions of CD4+ T cells by interfering with T-B-cell contact- dependent interaction; the inhibitory effects of soluble envelope proteins of HIV may contribute to the immunopathogenesis of the HIV- associated disease manifestations.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3925-3932 ◽  
Author(s):  
Dong-Mei Zhao ◽  
Angela M. Thornton ◽  
Richard J. DiPaolo ◽  
Ethan M. Shevach

The suppressive capacity of naturally occurring mouse CD4+CD25+ T cells on T-cell activation has been well documented. The present study is focused on the interaction of CD4+CD25+ T cells and B cells. By coculturing preactivated CD4+CD25+ T cells with B cells in the presence of polyclonal B-cell activators, we found that B-cell proliferation was significantly suppressed. The suppression of B-cell proliferation was due to increased cell death caused by the CD4+CD25+ T cells in a cell-contact–dependent manner. The induction of B-cell death is not mediated by Fas–Fas ligand pathway, but surprisingly, depends on the up-regulation of perforin and granzymes in the CD4+CD25+ T cells. Furthermore, activated CD4+CD25+ T cells preferentially killed antigen-presenting but not bystander B cells. Our results demonstrate that CD4+CD25+ T cells can act directly on B cells and suggest that the prevention of autoimmunity by CD4+CD25+ T cells can be explained, at least in part, by the direct regulation of B-cell function.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Abstract Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


1996 ◽  
Vol 184 (3) ◽  
pp. 831-838 ◽  
Author(s):  
J Wang ◽  
T Koizumi ◽  
T Watanabe

Mice deficient in the src related protein tyrosine kinase, Lyn, exhibit splenomegaly and accumulate lymphoblast-like and plasma cells in spleen as they age, resulting in elevated levels of serum IgM (10-20-fold of control) and glomerulonephritis due to the presence of immune complexes containing auto-reactive antibodies. It remains unclear, however, how antibody-producing cells are accumulated in the lymphoid tissues of Lyn-/- mice. To elucidate the role of Lyn in B cell function, we have studied the proliferative responses to various stimuli and Fas-mediated apoptosis in B cells from young Lyn-/- mice which do not yet show apparent abnormality such as splenomegaly. Compared with control B cells, Lyn-/- B cells were hyper responsive to anti-IgM-induced proliferation and defective in Fc gamma RIIB-mediated suppression of B cell antigen receptor (BCR) signaling, indicating that Lyn is involved in the negative regulation of BCR signaling. In addition, the BCR-mediated signal in Lyn-/- B cells, unlike that in control B cells, failed to act in synergy with either CD40- or IL-4 receptor-triggered signal in inducing a strong proliferative response, suggesting that the BCR signaling pathway in Lyn-/- B cells is altered from that in control B cells. Furthermore, Lyn-/- B cells were found to be impaired in the induction of Fas expression after CD40 ligation and exhibited a reduced susceptibility to Fas-mediated apoptosis. Moreover, BCR cross-linking in Lyn-/- B cells suppressed Fas expression induced by costimulation with CD40 ligand and IL-4. Collectively, these results suggest that the accumulation of lymphoblast-like and plasma cells in Lyn-/- mice may be caused in part, by the accelerated activation of B cells in the absence of Lyn, as well as the impaired Fas-mediated apoptosis after the activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3248-3248
Author(s):  
Sridhar Chaganti ◽  
Noelia Begue Pastor ◽  
Mark T. Drayson ◽  
Andy I. Bell ◽  
Alan B. Rickinson

Abstract Somatic hypermutation of immunoglobulin (Ig) gene sequences in the germinal centres of lymphoid tissues is necessary for affinity maturation of B cell responses to antigen challenge. This process generates a few clones with improved affinity that are selected into B cell memory and many clones with other non favourable Ig mutations, including some cells with functionally inactivated Ig gene that normally die by apoptosis. It is postulated that infection with Epstein-Barr virus (EBV), a B lymphotropic agent linked to several types of B cell lymphoma, can rescue germinal centre cells with unfavourable mutations. This creates a pool of infected cells at greater risk of developing into lymphomas. In the present work, CD38+ germinal centre B cells were separated from tonsil by negative selection for IgD and CD39. Peripheral blood naïve and memory B cell subpopulations were FACS sorted as IgD+, CD27− and IgD−, CD27+ fractions respectively. These cells were infected with EBV (B95.8 strain) in vitro and seeded at limiting dilutions onto fibroblast feeders. EBV transformed lymphoblastoid cell lines (LCLs) from such cultures were analysed for surface Ig phenotype. Naïve B cell transformants were consistently IgM+, IgD+. Memory B cell transformants were IgM+ in some cases but more frequently IgG+ or IgA+. Germinal centre transformants showed the same spectrum of surface Ig phenotypes as memory cell transformants but in addition we identified six germinal centre derived LCLs which were consistently surface Ig negative. Sequencing from these lines confirmed that in at least three cases EBV had rescued cells with functionally inactivated Ig heavy chain gene.


2018 ◽  
Vol 5 (3) ◽  
pp. 91-99
Author(s):  
Alexandra Langlois ◽  
Bahar Torabi ◽  
Marieme Dembele ◽  
Marylin Desjardins ◽  
Reza Alizadehfar ◽  
...  

Background: Gastrointestinal defects and immunodeficiency syndrome (GIDID) is a severe neonatal disorder usually fatal within the first months of life. We report a case presenting with intestinal atresia, combined immunodeficiency, and a novel association with hypothyroidism and cardiac malformations. The immune phenotype was remarkable for agammaglobulinemia, lymphopenia, and mildly decreased lymphocyte proliferation. We present here the unique phenotype as well as studies to determine if the agammaglobulinemia was due to an intrinsic B lymphocyte defect. Methods: Peripheral blood mononuclear cells from the patient and a healthy control were isolated by Ficoll-Hypaque centrifugation and stimulated with anti-CD40, IL-4 and IL-21 for 7 days. Total IgG production was measured by ELISA in the supernatant of the stimulated sample on day 7. Cells were stained for CD19, CD27, IgM, CD11b, CD11c, and CD14. Results: At day 7, supernatant from the patient stimulated cells contained levels of total IgG comparable to the control (755 ng/mL vs. 658 ng/mL, respectively). B cell maturation appeared impaired, as morphologically the patient sample demonstrated fewer B cell clones and cells with dendritic projections. Conclusions: Despite this typical severe clinical picture of GIDID with agammaglobulinemia, IgG production was detected under optimal stimulation for induction of plasma cells. This suggests that there may not be an inherent defect in class switching and antibody production in B cells in this disorder. It is possible that the in vivo physical or cytokine milieu may be defective for optimal B cell function. Further studies assessing the function of the immune cells as well as possible gastrointestinal loss of immunoglobulins are needed in this disease. Statement of novelty: Despite much improvement in understanding the effects of TTC7A mutations in GIDID, the root cause of hypogammaglobulinemia in these patients is still unclear. The work portrayed in this study furthers the current knowledge. It suggests that when appropriately stimulated in vitro, this patient’s B cells were capable of adequate immunoglobulin production. Moreover, to the best of our knowledge, this patient is the first with this genetic defect to be reported with hypothyroidism and cardiac malformations.


2014 ◽  
Vol 307 (9) ◽  
pp. L692-L706 ◽  
Author(s):  
Gerrit John-Schuster ◽  
Katrin Hager ◽  
Thomas M. Conlon ◽  
Martin Irmler ◽  
Johannes Beckers ◽  
...  

Chronic obstructive pulmonary disease (COPD) is characterized by a progressive decline in lung function, caused by exposure to exogenous particles, mainly cigarette smoke (CS). COPD is initiated and perpetuated by an abnormal CS-induced inflammatory response of the lungs, involving both innate and adaptive immunity. Specifically, B cells organized in iBALT structures and macrophages accumulate in the lungs and contribute to CS-induced emphysema, but the mechanisms thereof remain unclear. Here, we demonstrate that B cell-deficient mice are significantly protected against CS-induced emphysema. Chronic CS exposure led to an increased size and number of iBALT structures, and increased lung compliance and mean linear chord length in wild-type (WT) but not in B cell-deficient mice. The increased accumulation of lung resident macrophages around iBALT and in emphysematous alveolar areas in CS-exposed WT mice coincided with upregulated MMP12 expression. In vitro coculture experiments using B cells and macrophages demonstrated that B cell-derived IL-10 drives macrophage activation and MMP12 upregulation, which could be inhibited by an anti-IL-10 antibody. In summary, B cell function in iBALT formation seems necessary for macrophage activation and tissue destruction in CS-induced emphysema and possibly provides a new target for therapeutic intervention in COPD.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


1972 ◽  
Vol 136 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Marc Feldmann ◽  
Antony Basten

Tissue cultures with two compartments, separated by a cell impermeable nuclepore membrane (1 µ pore size), were used to investigate the mechanism of T-B lymphocyte cooperation. It was found that collaboration was as effective when the T and B lymphocyte populations were separated by the membrane as when they were mixed together. Critical tests were performed to verify that the membranes used were in fact cell impermeable. The specificity of the augmentation of the B cell response by various T cell populations was investigated. Only the response of B cells reactive to determinants on the same molecule as recognized by the T cells was augmented markedly. Specific activation of thymocytes by antigen was necessary for efficient collaboration across the membrane. The response of both unprimed and hapten-primed spleen cells was augmented by the T cell "factor" although, as expected, hapten-primed cells yielded greater responses. The T cell factor acted as efficiently if T cells were present or absent in the lower chamber. Thus the site of action of the T cell factor was not on other T cells, but was either on macrophages or the B cells themselves. The T cell-specific immunizing factor did not pass through dialysis membranes. The experiments reported here help rule out some of the possible theories of T-B cell collaboration. Clearly T-B cell contact was not necessary for successful cooperation to occur in this system. Possible theoretical interpretations of the results and their bearing on the detailed mechanism of T-B lymphocyte cooperation are discussed.


Sign in / Sign up

Export Citation Format

Share Document