scholarly journals Investigating the GWAS-Implicated Loci for Rheumatoid Arthritis in the Pakistani Population

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muhammad Muaaz Aslam ◽  
Peter John ◽  
Kang-Hsien Fan ◽  
Attya Bhatti ◽  
Wajahat Aziz ◽  
...  

Rheumatoid arthritis (RA) is a complex and multifactorial autoimmune disorder with the involvement of multiple genetic and environmental factors. Genome-wide association studies (GWAS) have identified more than 50 RA genetic loci in European populations. Given the anticipated overlap of RA-relevant genes and pathways across different ethnic groups, we sought to replicate 58 GWAS-implicated SNPs reported in Europeans in Pakistani subjects. 1,959 unrelated subjects comprising 1,222 RA cases and 737 controls were collected from three rheumatology facilities in Pakistan. Genotyping was performed using iPLEX or TaqMan® methods. A total of 50 SNPs were included in the final association analysis after excluding those that failed assay design/run or postrun QC analysis. Fourteen SNPs (LINC00824/rs1516971, PADI4/rs2240336, CEP57/rs4409785, CTLA4/rs3087243, STAT4/rs13426947, HLA-B/MICA/rs2596565, C5orf30/rs26232, CCL21/rs951005, GATA3/rs2275806, VPS37C/rs595158, HLA-DRB1/rs660895, EOMES/rs3806624, SPRED2/rs934734, and RUNX1/rs9979383) were replicated in our Pakistani sample at false discovery rate (FDR) of <0.20 with nominal p values ranging from 4.73E-06 to 3.48E-02. Our results indicate that several RA susceptibility loci are shared between Pakistani and European populations, supporting the role of common genes/pathways.

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
John J. Connolly ◽  
Hakon Hakonarson

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, known to have a strong genetic component. Concordance between monozygotic twins is approximately 30–40%, which is 8–20 times higher than that of dizygotic twins. In the last decade, genome-wide approaches to understanding SLE have yielded many candidate genes, which are important to understanding the pathophysiology of the disease and potential targets for pharmaceutical intervention. In this paper, we focus on the role of cytokines and examine how genome-wide association studies, copy number variation studies, and next-generation sequencing are being employed to understand the etiology of SLE. Prominent genes identified by these approaches includeBLK, FCγR3B,andTREX1. Our goal is to present a brief overview of genomic approaches to SLE and to introduce some of the key discussion points pertinent to the field.


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Oguri ◽  
K Kato ◽  
H Horibe ◽  
T Fujimaki ◽  
J Sakuma ◽  
...  

Abstract Background The circulating concentrations of triglycerides, high density lipoprotein (HDL)-cholesterol, and low density lipoprotein (LDL)-cholesterol have a substantial genetic component. Although previous genome-wide association studies identified various genes and loci related to plasma lipid levels, those studies were conducted in a cross-sectional manner. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to hypertriglyceridemia, hypo-HDL-cholesterolemia, and hyper-LDL-cholesterolemia in Japanese. We have now performed longitudinal exome-wide association studies (EWASs) to identify novel loci for dyslipidemia by examining temporal changes in serum lipid profiles. Methods Longitudinal EWASs (mean follow-up period, 5 years) for hypertriglyceridemia (2056 case, 3966 controls), hypo-HDL-cholesterolemia (698 cases, 5324 controls), and hyper-LDL-cholesterolemia (2769 cases, 3251 controls) were performed with Illumina Human Exome arrays. The relation of genotypes of 24,691 single nucleotide polymorphisms (SNPs) that passed quality control to dyslipidemia-related traits was examined with the generalized estimating equation (GEE). To compensate for multiple comparisons of genotypes with each of the three conditions, we applied Bonferroni's correction for statistical significance of association. Replication studies with cross-sectional data were performed for hypertriglyceridemia (2685 cases, 4703 controls), hypo-HDL-cholesterolemia (1947 cases, 6146 controls), and hyper-LDL-cholesterolemia (1719 cases, 5833 controls). Results Longitudinal EWASs revealed that 30 SNPs were significantly (P&lt;2.03 × 10–6 by GEE) associated with hypertriglyceridemia, 46 SNPs with hypo-HDL-cholesterolemia, and 25 SNPs with hyper-LDL-cholesterolemia. After examination of the relation of identified SNPs to serum lipid profiles, linkage disequilibrium, and results of the previous genome-wide association studies, we newly identified rs74416240 of TCHP, rs925368 of GIT2, rs7969300 of ATXN2, and rs12231744 of NAA25 as a susceptibility loci for hypo-HDL-cholesterolemia; and rs34902660 of SLC17A3 and rs1042127 of CDSN for hyper-LDL-cholesterolemia. These SNPs were not in linkage disequilibrium with those previously reported to be associated with dyslipidemia, indicating independent effects of the SNPs identified in the present study on serum concentrations of HDL-cholesterol or LDL-cholesterol in Japanese. According to allele frequency data from the 1000 Genomes project database, five of the six identified SNPs were monomorphic or rare variants in European populations. In the replication study, all six SNPs were associated with dyslipidemia-related phenotypes. Conclusion We have thus identified six novel loci that confer susceptibility to hypo-HDL-cholesterolemia or hyper-LDL-cholesterolemia. Determination of genotypes for these SNPs at these loci may prove informative for assessment of the genetic risk for dyslipidemia in Japanese. Funding Acknowledgement Type of funding source: None


Author(s):  
Navnit S. Makaram ◽  
Stuart H. Ralston

Abstract Purpose of Review To provide an overview of the role of genes and loci that predispose to Paget’s disease of bone and related disorders. Recent Findings Studies over the past ten years have seen major advances in knowledge on the role of genetic factors in Paget’s disease of bone (PDB). Genome wide association studies have identified six loci that predispose to the disease whereas family based studies have identified a further eight genes that cause PDB. This brings the total number of genes and loci implicated in PDB to fourteen. Emerging evidence has shown that a number of these genes also predispose to multisystem proteinopathy syndromes where PDB is accompanied by neurodegeneration and myopathy due to the accumulation of abnormal protein aggregates, emphasising the importance of defects in autophagy in the pathogenesis of PDB. Summary Genetic factors play a key role in the pathogenesis of PDB and the studies in this area have identified several genes previously not suspected to play a role in bone metabolism. Genetic testing coupled to targeted therapeutic intervention is being explored as a way of halting disease progression and improving outcome before irreversible skeletal damage has occurred.


Stroke ◽  
2021 ◽  
Author(s):  
Martin Dichgans ◽  
Nathalie Beaufort ◽  
Stephanie Debette ◽  
Christopher D. Anderson

The field of medical and population genetics in stroke is moving at a rapid pace and has led to unanticipated opportunities for discovery and clinical applications. Genome-wide association studies have highlighted the role of specific pathways relevant to etiologically defined subtypes of stroke and to stroke as a whole. They have further offered starting points for the exploration of novel pathways and pharmacological strategies in experimental systems. Mendelian randomization studies continue to provide insights in the causal relationships between exposures and outcomes and have become a useful tool for predicting the efficacy and side effects of drugs. Additional applications that have emerged from recent discoveries include risk prediction based on polygenic risk scores and pharmacogenomics. Among the topics currently moving into focus is the genetics of stroke outcome. While still at its infancy, this field is expected to boost the development of neuroprotective agents. We provide a brief overview on recent progress in these areas.


Sign in / Sign up

Export Citation Format

Share Document