scholarly journals Texture Detection of Aluminum Foil Based on Top-Hat Transformation and Connected Region Segmentation

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Fei He ◽  
Yuxing Hu ◽  
Jian Wang

A new method of texture detection for aluminum foil based on digital image processing technology is proposed. Top-hat transformation and image segmentation technology based on the connected domain are used to change the method of determining texture fraction by using human experience. Compared with the brightness method, pit detection method, and EBSD technology, this method can complete quantitative detection efficiently, automatically, and accurately, and reduce the detection time and manpower. It eliminates the instability of manual detection and ensures the accuracy of detection. By this method, the error of test results can be controlled within 1.6%, which is much better than 7.3% of the brightness method and 4% of the pitting method. It provides more accurate test results for the production process control of aluminum foil.

Author(s):  
Chen Liu ◽  
Yude Dong ◽  
Yanli Wei ◽  
Jiangtao Wang ◽  
Hongling Li

The internal structure analysis of radial tires is of great significance to improve vehicle safety and during tire research. In order to perform the digital analysis and detection of the internal composition in radial tire cross-sections, a detection method based on digital image processing was proposed. The research was carried out as follows: (a) the distribution detection and parametric analysis of the bead wire, steel belt, and carcass in the tire section were performed by means of digital image processing, connected domain extraction, and Hough transform; (b) using the angle of location distribution and area relationship, the detection data were optimized through coordinate and quantity relationship constraints; (c) a detection system for tire cross-section components was designed using the MATLAB platform. Our experimental results showed that this method displayed a good detection performance, and important practical significance for the research and manufacture of tires.


2015 ◽  
Vol 741 ◽  
pp. 354-358 ◽  
Author(s):  
Yang Shan Tang ◽  
Dao Hua Xia ◽  
Gui Yang Zhang ◽  
Li Na Ge ◽  
Xin Yang Yan

For overcoming the shortage of Otsu method, proposed an improved Otsu threshold segmentation algorithm. On the basis of Otsu threshold segmentation algorithm, the gray level was divided into two classes according to the image segmentation, to determine the best threshold by comparing their center distance, so as to achieve peak line recognition under the condition of multiple gray levels. Then did experiments on image segmentation of the lane line with MATLAB by traditional Otsu threshold segmentation algorithm and the improved algorithm, the threshold of traditional Otsu threshold segmentation algorithm is 144 and the threshold of the improved Otsu threshold segmentation algorithm is 131, the processing time is within 0.453 s. Test results show that the white part markings appear more, the intersection place of white lines and the background is more clear, so this method can identify lane markings well and meet the real-time requirements.


Author(s):  
Shouvik Chakraborty ◽  
Mousomi Roy ◽  
Sirshendu Hore

Image segmentation is one of the fundamental problems in image processing. In digital image processing, there are many image segmentation techniques. One of the most important techniques is Edge detection techniques for natural image segmentation. Edge is a one of the basic feature of an image. Edge detection can be used as a fundamental tool for image segmentation. Edge detection methods transform original images into edge images benefits from the changes of grey tones in the image. The image edges include a good number of rich information that is very significant for obtaining the image characteristic by object recognition and analyzing the image. In a gray scale image, the edge is a local feature that, within a neighborhood, separates two regions, in each of which the gray level is more or less uniform with different values on the two sides of the edge. In this paper, the main objective is to study the theory of edge detection for image segmentation using various computing approaches.


Author(s):  
Abdulrahman Moffaq Alawad ◽  
Farah Diyana Abdul Rahman ◽  
Othman O. Khalifa ◽  
Norun Abdul Malek

Edge detection is the first step in image recognition systems in a digital image processing. An effective way to resolve many information from an image such depth, curves and its surface is by analyzing its edges, because that can elucidate these characteristic when color, texture, shade or light changes slightly. Thiscan lead to misconception image or vision as it based on faulty method. This work presentsa new fuzzy logic method with an implemention. The objective of this method is to improve the edge detection task. The results are comparable to similar techniques in particular for medical images because it does not take the uncertain part into its account.


Edge detection is most important technique in digital image processing. It play an important role in image segmentation and many other applications. Edge detection providesfoundation to many medical and military applications.It difficult to generate a generic code for edge detection so many kinds ofalgorithms are available. In this article 4 different approaches Global image enhancement with addition (GIEA), Global image enhancement with Multiplication (GIEM),Without Global image enhancement with Addition (WOGIEA),and without Global image enhancement with Multiplication (WOGIEM)for edge detection is proposed. These algorithms are validatedon 9 different images. The results showthat GIEA give us more accurate results as compare to other techniques.


Author(s):  
Abahan Sarkar ◽  
Ram Kumar

In day-to-day life, new technologies are emerging in the field of Image processing, especially in the domain of segmentation. Image segmentation is the most important part in digital image processing. Segmentation is nothing but a portion of any image and object. In image segmentation, the digital image is divided into multiple set of pixels. Image segmentation is generally required to cut out region of interest (ROI) from an image. Currently there are many different algorithms available for image segmentation. This chapter presents a brief outline of some of the most common segmentation techniques (e.g. Segmentation based on thresholding, Model based segmentation, Segmentation based on edge detection, Segmentation based on clustering, etc.,) mentioning its advantages as well as the drawbacks. The Matlab simulated results of different available image segmentation techniques are also given for better understanding of image segmentation. Simply, different image segmentation algorithms with their prospects are reviewed in this chapter to reduce the time of literature survey of the future researchers.


2014 ◽  
Vol 487 ◽  
pp. 699-701
Author(s):  
Fang Li ◽  
Wan Tao Li

In order to improve the detection precision and speed of train wheel image,it is necessary to research digital image processing technology.In this paper,a kind of appropriate image filtering method,combination of smoothing and sharpening,and a kind of appropriate edge detection method,combination directly and by column in binarization,were introduced.A clear image of wheel surface can be obtained.The method of detection of scratch was designed.Non-contact measurement of train wheel surface quality can be realized,it will lead to the detection speed is faster, accuracy is higher.


2012 ◽  
Vol 459 ◽  
pp. 128-131
Author(s):  
Xue Feng Hou ◽  
Yuan Yuan Shang

Image segmentation is one focus of digital image processing. In this paper, fourteen different kinds of classical image segmentation algorithms are studied and compared using corn image and simulating in MATLAB based on HSI color model. The result reveals that the method that using H component based on HSI color model to deal with the histogram threshold algorithm and Laplace edge detection algorithm is effectively extract the plant from the corn image


Sign in / Sign up

Export Citation Format

Share Document