scholarly journals Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Can Lu ◽  
Danting Zhou ◽  
Qiang Wang ◽  
Wenliang Liu ◽  
Fenglei Yu ◽  
...  

Oxidative stress refers to an imbalance between reactive oxygen species (ROS) generation and body’s capability to detoxify the reactive mediators or to fix the relating damage. MicroRNAs are considered to be important mediators that play essential roles in the regulation of diverse aspects of carcinogenesis. Growing studies have demonstrated that the ROS can regulate microRNA biogenesis and expression mainly through modulating biogenesis course, transcription factors, and epigenetic changes. On the other hand, microRNAs may in turn modulate the redox signaling pathways, altering their integrity, stability, and functionality, thus contributing to the pathogenesis of multiple diseases. Both ROS and microRNAs have been identified to be important regulators and potential therapeutic targets in cancers. However, the information about the interplay between oxidative stress and microRNA regulation is still limited. The present review is aimed at summarizing the current understanding of molecular crosstalk between microRNAs and the generation of ROS in the pathogenesis of cancer.

2020 ◽  
Vol 21 (4) ◽  
pp. 1256
Author(s):  
Jiang Liu ◽  
Ying Nie ◽  
Muhammad Chaudhry ◽  
Fang Bai ◽  
Justin Chuang ◽  
...  

In recent years, Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions, including cardiac hypertrophy and uremic cardiomyopathy. Cardiotonic steroids (CTS), specific ligands of Na/K-ATPase, regulate its enzymatic activity (at higher concentrations) and signaling function (at lower concentrations without significantly affecting its enzymatic activity) and increase reactive oxygen species (ROS) generation. On the other hand, an increase in ROS alone also regulates the Na/K-ATPase enzymatic activity and signaling function. We termed this phenomenon the Na/K-ATPase-mediated oxidant-amplification loop, in which oxidative stress regulates both the Na/K-ATPase activity and signaling. Most recently, we also demonstrated that this amplification loop is involved in the development of uremic cardiomyopathy. This review aims to evaluate the redox-sensitive Na/K-ATPase-mediated oxidant amplification loop and uremic cardiomyopathy.


2021 ◽  
Author(s):  
Akio Nakamura ◽  
Ritsuko Kawahrada

Protein glycation is the random, nonenzymatic reaction of sugar and protein induced by diabetes and ageing; this process is quite different from glycosylation mediated by the enzymatic reactions catalysed by glycosyltransferases. Schiff bases form advanced glycation end products (AGEs) via intermediates, such as Amadori compounds. Although these AGEs form various molecular species, only a few of their structures have been determined. AGEs bind to different AGE receptors on the cell membrane and transmit signals to the cell. Signal transduction via the receptor of AGEs produces reactive oxygen species in cells, and oxidative stress is responsible for the onset of diabetic complications. This chapter introduces the molecular mechanisms of disease onset due to oxidative stress, including reactive oxygen species, caused by AGEs generated by protein glycation in a hyperglycaemic environment.


2020 ◽  
Vol 7 (3) ◽  
pp. 782-792 ◽  
Author(s):  
Hongye Yao ◽  
Yang Huang ◽  
Xuan Li ◽  
Xuehua Li ◽  
Hongbin Xie ◽  
...  

Graphene can be modified by different functional groups through various transformation processes in the environment.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 567 ◽  
Author(s):  
Fernando J. Peña ◽  
Cristian O’Flaherty ◽  
José M. Ortiz Rodríguez ◽  
Francisco E. Martín Cano ◽  
Gemma L. Gaitskell-Phillips ◽  
...  

Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Amrit Kaur Bansal ◽  
G. S. Bilaspuri

Oxidative stress (OS) has been considered a major contributory factor to the infertility. Oxidative stress is the result of imbalance between the reactive oxygen species (ROS) and antioxidants in the body which can lead to sperm damage, deformity, and eventually male infertility. Although high concentrations of the ROS cause sperm pathology (ATP depletion) leading to insufficient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability but, many evidences demonstrate that low and controlled concentrations of these ROS play an important role in sperm physiological processes such as capacitation, acrosome reaction, and signaling processes to ensure fertilization. The supplementation of a cryopreservation extender with antioxidant has been shown to provide a cryoprotective effect on mammalian sperm quality. This paper reviews the impacts of oxidative stress and reactive oxygen species on spermatozoa functions, causes of ROS generation, and antioxidative strategies to reduce OS. In addition, we also highlight the emerging concept of utilizing OS as a tool of contraception.


2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Laura Barrientos-Moreno ◽  
María Antonia Molina-Henares ◽  
Marta Pastor-García ◽  
María Isabel Ramos-González ◽  
Manuel Espinosa-Urgel

ABSTRACT Iron is essential for most life forms. Under iron-limiting conditions, many bacteria produce and release siderophores—molecules with high affinity for iron—which are then transported into the cell in their iron-bound form, allowing incorporation of the metal into a wide range of cellular processes. However, free iron can also be a source of reactive oxygen species that cause DNA, protein, and lipid damage. Not surprisingly, iron capture is finely regulated and linked to oxidative-stress responses. Here, we provide evidence indicating that in the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress. Mutants defective in arginine biosynthesis show reduced production and release of the siderophore pyoverdine and altered expression of certain pyoverdine-related genes, resulting in higher sensitivity to iron limitation. Although the amino acid is not part of the siderophore side chain, addition of exogenous l-arginine restores pyoverdine release in the mutants, and increased pyoverdine production is observed in the presence of polyamines (agmatine and spermidine), of which arginine is a precursor. Spermidine also has a protective role against hydrogen peroxide in P. putida, whereas defects in arginine and pyoverdine synthesis result in increased production of reactive oxygen species. IMPORTANCE The results of this study show a previously unidentified connection between arginine metabolism, siderophore turnover, and oxidative stress in Pseudomonas putida. Although the precise molecular mechanisms involved have yet to be characterized in full detail, our data are consistent with a model in which arginine biosynthesis and the derived pathway leading to polyamine production function as a homeostasis mechanism that helps maintain the balance between iron uptake and oxidative-stress response systems.


Sign in / Sign up

Export Citation Format

Share Document