scholarly journals miR193b Promotes Apoptosis of Gastric Cancer Cells via Directly Mediating the Akt Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ruyue Tian ◽  
Hailun Jiang ◽  
Linlin Shao ◽  
Yang Yu ◽  
Qingdong Guo ◽  
...  

Gastric cancer (GC) is one of the most common and fatal malignancies worldwide. MicroRNAs (miRNAs) play a critical role in tumor initiation, proliferation, and metastasis of gastric cancer. miR193b has been identified as a tumor suppressor in a variety of tumor types; however, its role in gastric cancer is yet to be determined. Here, we found a significant downregulation of miR193b expression in both human gastric cancer tissues (p<0.05) and human gastric cancer cell lines (p<0.01). Furthermore, the expression level of miR193b correlated with the tumor type, tumor size, and clinical stage (p<0.05). In vitro, miR193b overexpression inhibited cell survival and induced apoptosis in GC cell lines, indicating that miR193b plays a role in the development of gastric cancer. KRAS was verified as the target of miR193b, and KRAS overexpression attenuated miR193b-induced apoptosis (p<0.05). Moreover, we found that the Akt pathway negatively regulated miR193b, also affecting apoptosis. Further analyses indicated that PIK3CA mutation and KRAS amplification are two mutually exclusive pathways (p<0.01), and we hypothesize that both two pathways could result in the carcinogenic overactivation of KRAS. Thus, our results suggest that the Akt-miR193b-KRAS axis may act as a mechanism affecting apoptosis in gastric cancer cells.

2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


Author(s):  
Chunsheng Li ◽  
Jingrong Dong ◽  
Zhenqi Han ◽  
Kai Zhang

MicroRNAs (miRNAs) are reportedly involved in gastric cancer development and progression. In particular, miR-219-5p has been reported to be a tumor-associated miRNA in human cancer. However, the role of miR-219-5p in gastric cancer remains unclear. In this study, we investigated for the first time the potential role and underlying mechanism of miR-219-5p in the proliferation, migration, and invasion of human gastric cancer cells. miR-219-5p was found to be markedly decreased in gastric cancer tissues and cell lines compared with adjacent tissues and normal gastric epithelial cells. miR-219-5p mimics or anti-miR-219-5p was transfected into gastric cancer cell lines to overexpress or suppress miR-219-5p expression, respectively. Results showed that miR-219-5p overexpression significantly decreased the proliferation, migration, and invasion of gastric cancer cells. Conversely, miR-219-5p suppression demonstrated a completely opposite effect. Bioinformatics and luciferase reporter assays indicated that miR-219-5p targeted the 3′-untranslated region of the liver receptor homolog-1 (LRH-1), a well-characterized oncogene. Furthermore, miR-219-5p inhibited the mRNA and protein levels of LRH-1. LRH-1 mRNA expression was inversely correlated with miR-219-5p expression in gastric cancer tissues. miR-219-5p overexpression significantly decreased the Wnt/β-catenin signaling pathway in gastric cancer cells. Additionally, LRH-1 restoration can markedly reverse miR-219-5p-mediated tumor suppressive effects. Our study suggests that miR-219-5p regulated the proliferation, migration, and invasion of human gastric cancer cells by suppressing LRH-1. miR-219-5p may be a potential target for gastric cancer therapy.


2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Wenjuan Zhou ◽  
Liying Ma ◽  
Jing Yang ◽  
Hui Qiao ◽  
Lingyu Li ◽  
...  

Abstract Human mutT homolog 1(MTH1), the oxidized dNTP pool sanitizer enzyme, has been reported to be highly expressed in various malignant tumors. However, the oncogenic role of MTH1 in gastric cancer remains to be determined. In the current study, we found that MTH1 was overexpressed in human gastric cancer tissues and cells. Using an in vitro MTH1 inhibitor screening system, the compounds available in our laboratory were screened and the small molecules containing 5-cyano-6-phenylpyrimidine structure were firstly found to show potently and specifically inhibitory effect on MTH1, especially compound MI-743 with IC50 = 91.44 ± 1.45 nM. Both molecular docking and target engagement experiments proved that MI-743 can directly bind to MTH1. Moreover, MI-743 could not only inhibit cell proliferation in up to 16 cancer cell lines, especially gastric cancer cells HGC-27 and MGC-803, but also significantly induce MTH1-related 8-oxo-dG accumulation and DNA damage. Furthermore, the growth of xenograft tumours derived by injection of MGC-803 cells in nude mice was also significantly inhibited by MI-743 treatment. Importantly, MTH1 knockdown by siRNA in those two gastric cancer cells exhibited the similar findings. Our findings indicate that MTH1 is highly expressed in human gastric cancer tissues and cell lines. Small molecule MI-743 with 5-cyano-6-phenylpyrimidine structure may serve as a novel lead compound targeting the overexpressed MTH1 for gastric cancer treatment.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 53-53
Author(s):  
Yongping Liu ◽  
Yang Ling ◽  
Qiu feng Qi ◽  
Yaodong Pan

53 Background: HER2 amplification occurs in about 20% of gastric cancers, and trastuzumab in combination with cisplatin based chemotherapy has been reported to improve oncological outcomes in gastric and gastro-oesophageal junction cancer with HER2 gene amplification. The aim of this study was to evaluate the potentially useful combined antitumor efficacy of trastuzumab and platinum agents in gastric cancer cells and to elucidate further the mechanisms possibly involved in the interaction between the trastuzumab and platinum agents. Methods: Gene expression was determined by using real-time quantitative PCR in gastric cancer cell lines. The chemosensitivity of gastric cancer cells to platinum agents and the apoptotic effect of drugs in vitro were evaluated using cellTiter 96 Aqueous One Solution Cell Proliferation Assay kit and double staining with both Annexin-V-FITC and PI, respectively. Results: Treatment with 1.0μg/ml trastuzumab for 48h could significantly increase sensitivity of oxaliplatin or cisplatin in HER2 amplified gastric cancer cells, and the IC50 of oxaliplatin and cisplatin were reduced to about 3.29 times and 6.91 times, respectively. Apoptosis analysis also indicated that trastuzumab significantly increased both oxaliplatin and cisplatin-induced apoptosis in NCI-N87 cells. Analysis of telomere-related genes revealed that trastuzumab singly and pretreatment with trastuzumab for 48h followed by oxaliplatin or cisplatin for another 48h could significantly downregulate the mRNA expression of TPP1, TRF1, TRF2, TRF2IP, POT1 and TIN2 genes. Conclusions: Our results describe the potential role of low dose trastuzumab to increase sensitivity of oxaliplatin and cisplatin in HER2 amplified gastric cancer cells, which may be partially through downregulating the expression levels of telomere-related genes.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149120 ◽  
Author(s):  
Yanfei Jia ◽  
Haiji Sun ◽  
Hongqiao Wu ◽  
Huilin Zhang ◽  
Xiuping Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document