scholarly journals A New Measurement Based on HPB to Measure the Wall Pressure of Electric-Spark-Generated Bubble near the Hemispheric Boundary

2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Chunlong Ma ◽  
Dongyan Shi ◽  
Xiongwei Cui ◽  
Yingyu Chen

Direct measurement of the wall pressure loading of the spherical boundary subjected to the near-field underwater explosion is a great difficulty. To investigate the wall pressure caused by electric-spark-generated bubble near a hemispheric boundary, an experiment system is developed. In the method of this experiment, a Hopkinson bar (HPB), used as the sensing element, is inserted through the hole drilled on the hemisphere target and the bar’s measuring end face lies flush with the loaded face of the hemisphere target to detect and record the pressure loading. The semiconductor strain gauges which stick on Hopkinson bar are used to convert the pressure-based signal to the strain wave signal. The bubble in the experiments is formed by a discharge of 400 V high voltage. To validate the pressure measurement technique based on the HPB, an experimental result from pressure transducer is used as the validating system. To verify the capability of this new methodology and experimental system, a series of electric-spark-generated bubble experiments are conducted. From the recorded pressure-time profiles coupled with the underwater explosion evolution images captured by the high-speed camera (HSV), the shock wave pressure loading and bubble collapse pressure loadings are captured in detail at different dimensionless stand-off distances γ from 0.17 to 2.00. From the results of the experiments conducted in this paper, the proposed experiment system can be used to measure the pressure signal successfully, giving new way to study the bubble collapse pressure when the bubble is near a hemispheric boundary. Through the experimental results, the bubbles generated by different dimensionless stand-off distance γ are divided into four categories, and the bubble load characteristics are also discussed.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiongliang Yao ◽  
Xiongwei Cui ◽  
Kai Guo ◽  
Yingyu Chen

The wall pressure loading due to the underwater spark-generated bubble, having served as an efficient technique to study the underwater explosion, has drawn much attention. Compared with the numerical study of the pressure characteristics, the direct experimental investigation is much rarer. Recently, an improved pressure-measuring system by using a Hopkinson pressure bar as the sensing element is proposed, set up, and validated by the current authors. In this article, the improved methodology and experimental system is used to detect and analyze the pressure loading on the target plate surface due to the underwater spark-generated bubble beneath the plate. A series of experiments with 3 mm, 5 mm, 10 mm, 15 mm, …, 60 mm standoffs are carried out. The experimental results and the related analysis and discussions are presented. Based on the results, the improved methodology can be used to detect the pressure loading due to the spark-generated bubble. There is multipeak oscillation near the peak of the shock pressure loading profile. The peak pressure versus the standoff is also summarized. According to the characteristics of the induced water jet pressure and the bubble-collapse pressure loading given in this article, enough attention should be paid to not only the jet and the first bubble-collapse pressure loadings but also the secondary bubble-collapse pressure loadings especially when the dimensionless distance γ>1.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiongwei Cui ◽  
Xiongliang Yao ◽  
Yingyu Chen

Direct measurement of the wall pressure loading subjected to the near-field underwater explosion is of great difficulty. In this article, an improved methodology and a lab-scale experimental system are proposed and manufactured to assess the wall pressure loading. In the methodology, a Hopkinson bar (HPB), used as the sensing element, is inserted through the hole drilled on the target plate and the bar’s end face lies flush with the loaded face of the target plate to detect and record the pressure loading. Furthermore, two improvements have been made on this methodology to measure the wall pressure loading from a near-field underwater explosion. The first one is some waterproof units added to make it suitable for the underwater environment. The second one is a hard rubber cylinder placed at the distal end, and a pair of ropes taped on the HPB is used to pull the HPB against the cylinder hard to ensure the HPB’s end face flushes with loaded face of the target plate during the bubble collapse. To validate the pressure measurement technique based on the HPB, an underwater explosion between two parallelly mounted circular target plates is used as the validating system. Based on the assumption that the shock wave pressure profiles at the two points on the two plates which are symmetrical to each other about the middle plane of symmetry are the same, it was found that the pressure obtained by the HPB was in excellent agreement with pressure transducer measurements, thus validating the proposed technique. To verify the capability of this improved methodology and experimental system, a series of minicharge underwater explosion experiments are conducted. From the recorded pressure-time profiles coupled with the underwater explosion evolution images captured by the HSV camera, the shock wave pressure loading and bubble-jet pressure loadings are captured in detail at 5  mm, 10  mm, …, 30  mm stand-off distances. Part of the pressure loading of the experiment at 35  mm stand-off distance is recorded, which is still of great help and significance for engineers. Especially, the peak pressure of the shock wave is captured.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yingyu Chen ◽  
Xiongliang Yao ◽  
Xiongwei Cui

The bubble dynamics behaviors and the pressure in the wall center are investigated through experimental method and numerical study. In the experiment, the dynamics of an underwater explosion (UNDEX) bubble beneath a rigid wall are captured by high-speed camera and the wall pressure in the wall center is measured by pressure transducer. To reveal the process and mechanism of the pressure on a rigid wall during the first bubble collapse, numerical studies based on boundary element method (BIM) are applied. Numerical results with two different stand-off parameters (γ=0.38 and γ=0.90) show excellent agreement with experiment measurements and observations. According to the experimental and the numerical results, we can conclude that the first peak is caused by the reentrant jet impact and the following splashing effect enlarged the duration of the first jet impact. When γ=0.38, the splashing jet has a strong impact on the minimum volume bubble, a number of tiny bubbles, formed like bubble ring, are created and collapse more rapidly owing to the surrounding high pressure and emit multi shock waves. When γ=0.90, the pressure field around the bubble is low enough only a weak rebounding bubble peak occurs.


2011 ◽  
Vol 673 ◽  
pp. 225-230 ◽  
Author(s):  
Hideki Hamashima ◽  
Manabu Shibuta ◽  
Shigeru Itoh

The food processing technology using a shock wave can prevent deterioration of the food by heat because it can process food in a short time. Generally, since the shock wave used for food processing is generated by underwater explosion, the load of a shock wave to the food becomes very complicated. Therefore, in order to process safely, it is important to clarify the behaviors of the shock wave and the bubble pulse generated by underwater explosion. In this research, in order to investigate the behavior of the shock wave in the water tank used for food processing, the optical observation experiment and the numerical simulation were performed. In the experiment, the shock wave generated by underwater explosion was observed with the high-speed video camera. The numerical simulation about the behavior of bubble pulse was performed using analysis software LS-DYNA. Comparing and examining were performed about the experimental result and the numerical simulation result. The result of the numerical simulation about the behavior of the shock wave generated by underwater explosion and the shock wave generated by the bubble pulse and the bubble pulse was well in agreement with the experimental result.


1995 ◽  
Vol 117 (4) ◽  
pp. 635-641 ◽  
Author(s):  
S. R. Kidd ◽  
J. S. Barton ◽  
P. Meredith ◽  
J. D. C. Jones ◽  
M. A. Cherrett ◽  
...  

This paper describes the design, operation, construction, and demonstration of a new type of high-bandwidth unsteady temperature sensor based on fiber optics, and capable of operating in a high-speed multistage research compressor with flow representative of jet engine conditions. The sensing element is an optical coating of zinc selenide deposited on the end of an optical fiber. During evaluation in aerodynamic testing, a 1 K gas temperature resolution was demonstrated at 9.6 kHz and an upper bandwidth limit of 36 kHz achieved.


1948 ◽  
Vol 15 (3) ◽  
pp. 248-255
Author(s):  
E. T. Habib

Abstract In mechanical gages used to measure the pressure from an underwater explosion, small copper cylinders are compressed at high speeds. This paper describes the test apparatus designed for the dynamic calibration of these cylinders, presents the results obtained with this apparatus, and compares these results with those obtained by other experimenters.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


Author(s):  
A. M. Zhang ◽  
X. L. Yao ◽  
D. Y. Shi ◽  
J. Li

Based on the potential-flow assumption, BEM is applied to simulate the dynamic characteristics of underwater explosion bubble near boundaries and solve the interaction of bubble and elastic-plastic structure by coupling with FEM. A complete 3D program of underwater bubble analysis (UBA) is developed and the calculated error is within 10%. With this program, flat plate, cylinder and other simple structures are analyzed; the damages caused by retarded flow, pulsating pressure and jet and other loads on the structures are calculated, including different cases with free surface or without free surface. Results show that bubbles can cause great damage, and the specific cases can even cause greater damage. From the wall pressure and the stress curves of typical elements on the structure, it can be seen that the pressure peak occurs when the bubble collapses, which proves that the pressures caused by the bubble’s collapse and jet can result in great structure’s severe damage. It can provide reference for the research on the dynamic characteristics. The research in this paper aims to provide references for the correlated research on the dynamics of the underwater bubble.


2018 ◽  
Vol 183 ◽  
pp. 02006 ◽  
Author(s):  
Amos Gilat ◽  
Jeremy D. Seidt

The Split Hopkinson Bar (SHB) technique is used for high strain rate testing of T800/F3900 composite in compression, tension and shear. Digital Image Correlation (DIC) is used for measuring the full-field deformation on the surface of the specimen by using Shimadzu HPV-X2 high-speed video camera. Compression tests have been done on specimens machined from a unidirectional laminate in the 0°and 90° directions. Tensile tests were done in the 90° direction. Shear tests were done by using a notched specimen in a compression SHB apparatus. To study the effect of strain rate, quasi-static testing was also done using DIC and specimens with the same geometry as in the SHB tests. The results show that the DIC technique provides accurate strain measurements even at strains that are smaller than 1%. No strain rate effect is observed in compression in the 0° direction and significant strain rate effects are observed in compression and tension in the 90° direction, and in shear.


Sign in / Sign up

Export Citation Format

Share Document