scholarly journals Mibefradil and Flunarizine, Two T-Type Calcium Channel Inhibitors, Protect Mice against Lipopolysaccharide-Induced Acute Lung Injury

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Limei Wan ◽  
Weibin Wu ◽  
Shunjun Jiang ◽  
Shanhe Wan ◽  
Dongmei Meng ◽  
...  

Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.

2016 ◽  
Vol 311 (2) ◽  
pp. L517-L524 ◽  
Author(s):  
Kaiser M. Bijli ◽  
Fabeha Fazal ◽  
Spencer A. Slavin ◽  
Antony Leonard ◽  
Valerie Grose ◽  
...  

Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε−/− mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε−/− mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε+/+ mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI.


2017 ◽  
Vol 44 (4) ◽  
pp. 1526-1536 ◽  
Author(s):  
Wenlin Tai ◽  
Yiheng Xu ◽  
Jiawei Ding ◽  
Hanxin Wu ◽  
Ming Du ◽  
...  

Background/Aims: Acute lung injury (ALI) remains a severe disease that threatens human life around the world. To decrease the mortality of ALI and improve ALI treatment efficacy, the development of more ALI treatments is urgently needed. Whether fibrocytes directly participate in ALI has not been studied. Therefore, a mouse model of ALI was induced with lipopolysaccharide (LPS). Methods: Fibrocytes were harvested from peripheral blood mononuclear cells of bleomycin mice and identified by using flow cytometry to detect the expression of molecular makers. The fibrocytes were injected for the treatment of acute lung injury mice. The curative effects were evaluated by using ELISA to determine the cytokines (including TNF-α, IL-6 and IFN-γ) concentrations in bronchoalveolar lavage fluid (BALF) supernatant. Results: The concentrations of cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interferon-γ (IFN-γ) were increased in mice with ALI induced with LPS. The concentrations of TNF-α, IL-6, and IFN-γ as well as their mRNA and protein expression levels were decreased by administration of fibrocytes. The effect of fibrocytes in ameliorating ALI was time dependent. LPS treatment induced an increase in myeloperoxidase (MPO) activity, whereas the fibrocyte treatment caused inhibition of MPO activity as well as expression of the neutrophil-chemoattractant chemokine macrophage inflammatory protein 2 (MIP-2). Conclusion: Taken together, these data suggest that fibrocytes ameliorated ALI by suppressing inflammatory cytokines and chemokines as well as by decreasing the accumulation of neutrophils in the lung.


Gut ◽  
1998 ◽  
Vol 43 (2) ◽  
pp. 232-239 ◽  
Author(s):  
M O Osman ◽  
J U Kristensen ◽  
N O Jacobsen ◽  
S B Lausten ◽  
B Deleuran ◽  
...  

Background—Interleukin 8 (IL-8) has recently been proposed to have an important role in mediating the development of the systemic sequelae associated with severe acute pancreatitis.Aims—To define the role of IL-8 in acute pancreatitis by neutralising its effects with a monoclonal anti-IL-8 antibody (WS-4), in a rabbit model of severe acute pancreatitis.Methods—Acute pancreatitis was induced by retrograde injection of 5% chenodeoxycholic acid into the pancreatic duct and duct ligation. Twenty rabbits were divided equally into two groups: acute pancreatitis controls received physiological saline and the treated group received WS-4, 30 minutes before induction of acute pancreatitis.Results—Pretreatment of animals with WS-4 resulted in significant down regulation of serum IL-8 and tumour necrosis factor α (TNF-α) from three to six hours after induction of acute pancreatitis (p=0.011 and 0.047 for IL-8 and 0.033 and 0.022 for TNF-α, respectively). In addition, a significant reduction in the CD11b and CD18 positive cells and the amount of interstitial neutrophil infiltration in the lungs from WS-4 treated animals was seen. In contrast, WS-4 did not alter the amount of pancreatic necrosis and the serum concentrations of amylase, lipase, calcium, and glucose.Conclusion—WS-4 cannot change the amount of pancreatic necrosis induced by injection of 5% bile acid, but does reduce the acute lung injury, presumably through inhibition of circulating IL-8 and TNF-α, and CD11b/CD18 in lung tissue. Therefore, a role of IL-8 in the progression of acute pancreatitis and the development of its systemic complications is suggested.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Zhu ◽  
Taocheng Meng ◽  
Aichen Sun ◽  
Jintao Li ◽  
Jinlai Li

Objective. This study aimed to explore the role of angelica polysaccharide (AP) in sepsis-induced acute lung injury (ALI) and its underlying molecular mechanism. Methods. A sepsis model of cecal ligation and puncture (CLP) in male BALB/C mice was used. Then, 24 h after CLP, histopathological changes in lung tissue, lung wet/dry weight ratio, and inflammatory cell infiltration were analyzed. Next, levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18), as well as the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH), were measured to assess the role of AP. The protein expression of NF-κB p65, p-NF-κB p65, IκBα, p-IκBα, nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3), ASC, and caspase-1 was detected by western blot. In addition, the expression of p-NF-κB p65 and NLRP3 was detected by immunohistochemistry. Results. AP treatment ameliorated CLP-induced lung injury and lung edema, as well as decreased the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). AP reduced the levels of TNF-α, IL-1β, IL-6, and IL-18 in BALF, as well as in serum. Moreover, AP decreased MPO activity and MDA content, whereas increased SOD and GSH levels. AP inhibited the expression of p-NF-κB p65, p-IκBα, NLRP3, ASC, and caspase-1, while promoted IκBα expression. Conclusion. This study demonstrated that AP exhibits protective effects against sepsis-induced ALI by inhibiting NLRP3 and NF-κB signaling pathways in mice.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1742 ◽  
Author(s):  
Ching-Ying Huang ◽  
Jeng-Shyan Deng ◽  
Wen-Chin Huang ◽  
Wen-Ping Jiang ◽  
Guan-Jhong Huang

The anti-inflammatory effect of hispolon has identified it as one of the most important compounds from Sanghuangporus sanghuang. The research objectives were to study this compound using an animal model by lipopolysaccharide (LPS)-induced acute lung injury. Hispolon treatment reduced the production of the pro-inflammatory mediator NO, TNF-α, IL-1β, and IL-6 induced by LPS challenge in the lung tissues, as well as decreasing their histological alterations and protein content. Total cell number was also reduced in the bronchoalveolar lavage fluid (BALF). Moreover, hispolon inhibited iNOS, COX-2 and IκB-α and phosphorylated IKK and MAPK, while increasing catalase, SOD, GPx, TLR4, AKT, HO-1, Nrf-2, Keap1 and PPARγ expression, after LPS challenge. It also regulated apoptosis, ER stress and the autophagy signal transduction pathway. The results of this study show that hispolon regulates LPS-induced ER stress (increasing CHOP, PERK, IRE1, ATF6 and GRP78 protein expression), apoptosis (decreasing caspase-3 and Bax and increasing Bcl-2 expression) and autophagy (reducing LC3 I/II and Beclin-1 expression). This in vivo experimental study suggests that hispolon suppresses the LPS-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy and has the potential to be used therapeutically in major anterior segment lung diseases.


2008 ◽  
Vol 295 (3) ◽  
pp. L497-L504 ◽  
Author(s):  
Xia Zhao ◽  
Jaroslaw W. Zmijewski ◽  
Emmanuel Lorne ◽  
Gang Liu ◽  
Young-Jun Park ◽  
...  

AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP-to-ATP ratio and plays a central role in cellular responses to metabolic stress. Although activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) and barberine, on Toll-like receptor 4 (TLR4)-induced neutrophil activation. AICAR and barberine dose-dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-α and IL-6, as well as degradation of IκBα and nuclear translocation of NF-κB, compared with findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-α and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4-induced neutrophil activation and diminishes the severity of neutrophil-driven proinflammatory processes, including acute lung injury.


2021 ◽  
Author(s):  
Larissa Rodrigues Bernardo ◽  
Laércia Karla Diega Paiva Ferreira ◽  
Larissa Adilis Maria Paiva Ferreira ◽  
Cosmo Isaías Duvirgens Vieira ◽  
João Batista de Oliveira ◽  
...  

Abstract Acute lung injury (ALI) is an inflammation that triggers acute respiratory distress syndrome (ARDS) with perialveolar neutrophil infiltration, alveolar-capillary barrier damage, and lung edema. Activation of the toll-like receptor 4 complex and its downstream signaling pathways are responsible for the cytokine storm and cause alveolar damage on ARDS. Due to the complexity of inflammatory events on ALI, a defined pharmacotherapy has not been established. Thus, this study aimed to evaluate the anti-inflammatory potential of milonine, an alkaloid of Cissampelos sympodialis Eichl, in an ALI experimental model. BALB/c mice were lipopolysaccharide (LPS)-challenged and treated with milonine at 2.0 mg/kg. Twenty-four hours later, the bronchoalveolar lavage fluid (BALF), peripheral blood, and lungs were collected for cellular and molecular analysis. The milonine treatment decreased the inflammatory cell migration (principally neutrophils) to the alveolar cavity, the protein exudate, the pulmonary edema, and the level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) into the BALF. The systemic level of IL-6 level was also reduced. In the lung tissue, milonine reduced the bronchoalveolar damage. The milonine docking analyzes demonstrated that the molecule formed hydrophobic interactions with the amino-acids Ile124 and Phe126 of the TLR4/MD2 groove. Indeed, the anti-inflammatory effect of milonine was due to the negative regulation of cytoplasmic kinase-Akt and NF-κB by interacting with the TLR4/MD2 complex. Therefore, milonine is an effective inflammatory modulator by blocking the interaction of the LPS-TLR4/MD2 complex and downregulating the intracellular inflammatory pathway axis being a potential molecule for the treatment of ALI.


2021 ◽  
Vol 16 (1) ◽  
pp. 1064-1081
Author(s):  
Bingnan Guo ◽  
Yigen Peng ◽  
Yuting Gu ◽  
Yi Zhong ◽  
Chenglei Su ◽  
...  

Abstract Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe syndrome lacking efficient therapy and resulting in high morbidity and mortality. Although resveratrol (RES), a natural phytoalexin, has been reported to protect the ALI by suppressing the inflammatory response, the detailed mechanism of how RES affected the immune system is poorly studied. Pulmonary conventional dendritic cells (cDCs) are critically involved in the pathogenesis of inflammatory lung diseases including ALI. In this study, we aimed to investigate the protective role of RES via pulmonary cDCs in lipopolysaccharide (LPS)-induced ALI mice. Murine ALI model was established by intratracheally challenging with 5 mg/kg LPS. We found that RES pretreatment could mitigate LPS-induced ALI. Additionally, proinflammatory-skewed cytokines decreased whereas anti-inflammatory-related cytokines increased in bronchoalveolar lavage fluid by RES pretreatment. Mechanistically, RES regulated pulmonary cDCs’ maturation and function, exhibiting lower level of CD80, CD86, major histocompatibility complex (MHC) II expression, and IL-10 secretion in ALI mice. Furthermore, RES modulated the balance between proinflammation and anti-inflammation of cDCs. Moreover, in vitro RES pretreatment regulated the maturation and function of bone marrow derived dendritic cells (BMDCs). Finally, the adoptive transfer of RES-pretreated BMDCs enhanced recovery of ALI. Thus, these data might further extend our understanding of a protective role of RES in regulating pulmonary cDCs against ALI.


Perfusion ◽  
2021 ◽  
pp. 026765912110521
Author(s):  
Yunzi He ◽  
Yuanjie Zhang ◽  
Hanhua Wu ◽  
Junli Luo ◽  
Chi Cheng ◽  
...  

Introduction Cardiopulmonary bypass (CPB) –induced lung ischemia-reperfusion (I/R) injury remains a large challenge in cardiac surgery; up to date, no effective treatment has been found. Annexin A1 (AnxA1) has an anti-inflammatory effect, and it has been proven to have a protective effect on CPB-induced lung injury. However, the specific mechanism of AnxA1 in CPB-induced lung injury is not well studied. Therefore, we established a CPB-induced lung injury model to explore the relevant mechanism of AnxA1 and try to find an effective treatment for lung protection. Methods Male rats were randomized into five groups ( n = 6, each): sham (S group), I/R exposure (I/R group), I/R + dimethyl sulfoxide (D group), I/R + Ac2-26 (AnxA1 peptide) (A group), and I/R + LY294002 (a PI3K specific inhibitor) (AL group). Arterial blood gas analysis and calculation of the oxygenation index, and respiratory index were performed. The morphological changes in lung tissues were observed under light and electron microscopes. TNF-α and IL-6 and total protein in lung bronchoalveolar lavage fluid were detected via enzyme-linked immunosorbent assay. The expressions of PI3K, Akt, and NF-κB (p65) as well as p-PI3K, p-Akt, p-NF-κB (p65), and AnxA1 were detected via western blotting. Results Compared with the I/R group, the A group showed the following: lower lung pathological damage score; decreased expression of IL-6 and total protein in the bronchoalveolar lavage fluid, and TNF-α in the lung; increased lung oxygenation index; and improved lung function. These imply the protective role of Ac2-26, and show that LY294002 inhibited the ameliorative preconditioning effect of Ac2-26. Conclusion This finding suggested that the AnxA1 peptide Ac2-26 decreased the inflammation reaction and CPB-induced lung injury in rats, the lung protective effects of AnxA1may be correlated with the activation of PI3K/Akt signaling pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xuanfei Li ◽  
Zheng Liu ◽  
He Jin ◽  
Xia Fan ◽  
Xue Yang ◽  
...  

Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.


Sign in / Sign up

Export Citation Format

Share Document