scholarly journals Erigeron annuus Protects PC12 Neuronal Cells from Oxidative Stress Induced by ROS-Mediated Apoptosis

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ji Yeon Lee ◽  
Jeong-Yong Park ◽  
Dong Hwi Kim ◽  
Hyung Don Kim ◽  
Yun-Jeong Ji ◽  
...  

Reactive oxygen species (ROS), associated with oxidative stress, are involved in many biological processes such as apoptosis, necrosis, and autophagy. Oxidative stress might induce neuronal damage via ROS generation, causing neurodegenerative diseases. Erigeron annuus (EA) has antioxidant properties and could protect neurons from oxidative stress. In this study, we investigated the protective effect of the aerial parts (EAA) and flowers (EAF) from EA on ROS-mediated apoptosis in pheochromocytoma 12 cells. We quantified 18 types of phenolic compounds using high-performance liquid chromatography. Pretreatment of the cells with EAA and EAF attenuated ROS generation and induced the expression of antioxidant enzymes such as superoxide dismutase 2, catalase, and glutathione peroxidase. In addition, EAF reduced the expression of apoptotic proteins such as Bax/Bcl-xL, caspase-3, and caspase-8 to a greater extent than that with EAA. These results suggested that the protective effect of EAF against oxidative stress-induced apoptosis might be due to the prevention of ROS generation mediated by oxidative enzymes.

2021 ◽  

Myocardial infarction is a serious representation of cardiovescular disease, MicroRNAs play a role in modifying I/R injury and myocardial infarct remodeling. The present study therefore examined the potential role of miR-187 in cardiac I/R injury and its underlying mechanisms. miR-187 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor to confirm the function of miR-187 in H/R. DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with DYRK2 inhibitor. A myocardium I/R mouse model was established. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress.These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression.


2019 ◽  
Vol 41 (5) ◽  
pp. 859-859
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Saeeda Bano Saeeda Bano ◽  
Samina Iqbal Samina Iqbal ◽  
...  

Acute exposure to stress is connected to many disorders that promote the toxicity of oxygen radical generators leading to increase in the levels of enzymes and also the activation of the HPA axis. The present study uses a preclinical approach to elucidate some prospective stress-induced behavioral and biochemical effects. The aim of current study was to investigate the relationship between stress and behavioral changes after exposing animals to 2h immobilization stress. We also evaluated the concentration of corticosterone, glucose and endogenous leptin levels in unstressed and stressed animals to explore the possible role of HPA axis in the modulation of stressed induced behavioral deficits. Rats were divided into stressed and unstressed groups. Behavioral activities were monitored in open field activity and light dark transition box after the termination of 2h immobilization period. Animals were then decapitated and plasma samples were collected for catalase, SOD, corticosterone, and glucose estimation. Results showed that exposure to acute stress produced a significant decrease in the activity of rats in the novel environment (open field) and light dark transition box. On the other hand, concomitant elevated level of peripheral markers of oxidative stress such as oxidative enzymes, corticosterone and endogenous leptin were also observed. Therefore, current study seems to suggest an important role of compounds having antioxidant properties for the treatment of stress and related disorders.


2003 ◽  
Vol 44 (5) ◽  
pp. 2252 ◽  
Author(s):  
Nora P. Rotstein ◽  
Luis E. Politi ◽  
O. Lorena German ◽  
Romina Girotti

2018 ◽  
Vol 52 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Sema Misir ◽  
Yuksel Aliyazicioglu ◽  
Selim Demir ◽  
Ibrahim Turan ◽  
Serap Ozer Yaman ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1231
Author(s):  
Jin Woo Kim ◽  
Eun Hee Jo ◽  
Ji Eun Moon ◽  
Hanvit Cha ◽  
Moon Han Chang ◽  
...  

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Somayeh Keshtkar ◽  
Maryam Kaviani ◽  
Zahra Jabbarpour ◽  
Bita Geramizadeh ◽  
Elahe Motevaseli ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Youngmun Lee ◽  
Sunyoung Kim ◽  
Yeonsoo Oh ◽  
Young-Mi Kim ◽  
Young-Won Chin ◽  
...  

Among a series of xanthones identified from mangosteen, the fruit of Garcinia mangostana L. (Guttifereae), α- and γ-mangostins are known to be major constituents exhibiting diverse biological activities. However, the effects of γ-mangostin on oxidative neurotoxicity and impaired memory are yet to be elucidated. In the present study, the protective effect of γ-mangostin on oxidative stress-induced neuronal cell death and its underlying action mechanism(s) were investigated and compared to that of α-mangostin using primary cultured rat cortical cells. In addition, the effect of orally administered γ-mangostin on scopolamine-induced memory impairment was evaluated in mice. We found that γ-mangostin exhibited prominent protection against H2O2- or xanthine/xanthine oxidase-induced oxidative neuronal death and inhibited reactive oxygen species (ROS) generation triggered by these oxidative insults. In contrast, α-mangostin had no effects on the oxidative neuronal damage or associated ROS production. We also found that γ-mangostin, not α-mangostin, significantly inhibited H2O2-induced DNA fragmentation and activation of caspases 3 and 9, demonstrating its antiapoptotic action. In addition, only γ-mangostin was found to effectively inhibit lipid peroxidation and DPPH radical formation, while both mangostins inhibited β-secretase activity. Furthermore, we observed that the oral administration of γ-mangostin at dosages of 10 and 30 mg/kg markedly improved scopolamine-induced memory impairment in mice. Collectively, these results provide both in vitro and in vivo evidences for the neuroprotective and memory enhancing effects of γ-mangostin. Multiple mechanisms underlying this neuroprotective action were suggested in this study. Based on our findings, γ-mangostin could serve as a potentially preferable candidate over α-mangostin in combatting oxidative stress-associated neurodegenerative diseases including Alzheimer’s disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Tamaeh Monteiro-Alfredo ◽  
Paulo Matafome ◽  
Bianca Pancoti Iacia ◽  
Kátia Ávila Antunes ◽  
Jéssica Maurino dos Santos ◽  
...  

Oxidative stress is a metabolic disorder linked with several chronic diseases, and this condition can be improved by natural antioxidants. The fruit pulp of the palm Acrocomia aculeata (Jacq.) Lodd. ex Mart. is widely used in the treatment of various illnesses, but as far as we know, there are no reports regarding the properties of its leaves. Thus, we aimed to evaluate the antioxidant activity of A. aculeata leaf extracts obtained with water (EA-Aa), ethanol (EE-Aa), and methanol (EM-Aa) solvents. The extracts were chemically characterized, and their antioxidant activity was assessed through the scavenging of the free radicals DPPH and ABTS. EE-Aa and EM-Aa showed the highest amounts of phenolic compounds and free radical scavenging activity. However, EA-Aa was more efficient to protect human erythrocytes against AAPH-induced hemolysis and lipid peroxidation. Thus, we further show the antioxidant effect of EA-Aa in preventing AAPH-induced protein oxidation, H2O2-induced DNA fragmentation, and ROS generation in Cos-7 cells. Increased levels of Sirt1, catalase, and activation of ERK and Nrf2 were observed in Cos-7 treated with EA-Aa. We also verify increased survival in nematodes C. elegans, when induced to the oxidative condition by Juglone. Therefore, our results showed a typical chemical composition of plants for all extracts, but the diversity of compounds presented in EA-Aa is involved in the lower toxicity and antioxidant properties provided to the macromolecules tested, proteins, DNA, and lipids. This protective effect also proven in Cos-7 and in C. elegans was probably due to the activation of the Sirt1/Nrf2 pathway. Altogether, the low toxicity and the antioxidant properties of EA-Aa showed in all the experimental models support its further use in the treatment of oxidative stress-related diseases.


Sign in / Sign up

Export Citation Format

Share Document