scholarly journals Theoretical Investigation on Structure-Property Relationship of Asymmetric Clusters (CH3FBN3)n (n = 1– 6)

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Deng-Xue Ma ◽  
Yao-Yao Wei ◽  
Yun-Zhi Li ◽  
Guo-Kui Liu ◽  
Qi-Ying Xia

The structural, relative stability, electronic, IR vibrational, and thermodynamic properties of asymmetric clusters (CH3FBN3)n (n = 1–6) are systematically investigated using density functional theory (DFT) method. Results show that clusters (CH3FBN3)n (n = 2–6) form a cyclic structure with a B atom and a Nα atom binding together. Five main characteristic regions are observed and assigned for the calculated IR spectra. The size-dependent second-order energy difference shows that clusters (CH3FBN3)3 and (CH3FBN3)5 have relatively higher stability and enhanced chemical inertness compared with the neighboring clusters. These two clusters may serve as the cluster-assembled materials. The variations of thermodynamic properties with temperature T or cluster size n are analyzed, respectively. Based on enthalpies in the range of 200–800 K, the formations of the most stable clusters (CH3FBN3)n (n = 2–6) from monomer are thermodynamically favorable. These data are helpful to design and synthesize other asymmetric boron azides.

2018 ◽  
Vol 32 (14) ◽  
pp. 1850169
Author(s):  
Leini Wang ◽  
Zhang Jian ◽  
Wei Ning

The phonon, elastic and thermodynamic properties of L12phase Rh3Ta have been investigated by the density functional theory (DFT) approach combined with the quasi-harmonic approximation model. The results of the phonon band structure show that L12phase Rh3Ta possesses dynamical stability in the pressure range from 0–80 GPa due to the absence of imaginary frequencies. The pressure dependences with the elastic constants C[Formula: see text], shear modulus G, bulk modulus B, Young’s modulus Y, Poisson’s ratio and B/G ratio have been analyzed. The results of the elastic properties studies show that L12phase Rh3Ta compound is mechanically stable and possesses a higher hardness, improved ductility and plasticity under higher pressures. The pressure and temperature relationship of the thermodynamic properties, such as the Debye temperature [Formula: see text], heat capacity C[Formula: see text], thermal expansion coefficient [Formula: see text] and the Grüneisen parameter [Formula: see text] are predicted by the quasi-harmonic Debye model in a wide pressure (0–80 GPa) and temperature (0–750 K) ranges.


2014 ◽  
Vol 28 (27) ◽  
pp. 1430018 ◽  
Author(s):  
Xingxing Jiang ◽  
Lei Kang ◽  
Siyang Luo ◽  
Pifu Gong ◽  
Ming-Hsien Lee ◽  
...  

Nonlinear optical (NLO) crystals are very important optoelectronic functional materials and their developments have significantly contributed to the progress of laser science and technology for decades. In order to explore new NLO crystals with superior performances, it is greatly desirable to understand the intrinsic relationship between the macroscopic optical properties and microscopic structural features in crystals. In this paper, the applications of density functional theory (DFT) method to the elucidation of the structure-property relationship and to the exploration on novel NLO materials in the ultraviolet and infrared spectrum regions are reviewed. The great success in the linear and NLO property predictions has been achieved using the first-principles computational simulations, and the mechanism understanding obtained by various analysis tools can give substantial guidance to the search and design of new NLO crystals.


2020 ◽  
Vol 10 (5) ◽  
pp. 453
Author(s):  
Koffi Alexis Respect Kouassi ◽  
Anoubilé Benié ◽  
Kouakou Nobel N’guessan ◽  
Mamadou Guy-Richard Koné ◽  
Adenidji Ganiyou ◽  
...  

<p>In this work, the density functional theory (DFT) method at the B3LYP/6-31 + G (d, p) level has used to determine the optimization of five rhodanine derivatives. The stability of the derivatives (7a-7e) of 5-arylidene rhodanine, the hyperconjugative interactions, the delocalization of the atomic charges was analyzed with the analysis of the Natural Bond Orbital (NBO). The electronic structures were discussed and the relocation of electronic density was determined. Molecular Electrostatic Potential (MEP), local density functional descriptors, border molecular orbitals and absorption spectrum were studied. Through the local Fukui reactivity indices, the carbon of the carbonyl group (C = O) is the preferential site of the nucleophilic attack and the sulfur atom linked to the trigonal carbon (C = S) is the preferential site of electrophile attack. Analysis of the global descriptors revealed that compound 7c is the most reactive with an energy difference between the frontier orbitals of ΔEgap = 3.305 eV. Furthermore, this compound 7c is the less stable, the softest and has the greatest electronic exchange capacity of all studied compounds. The intramolecular electronic transitions which stabilize these compounds are LP → π * for 7a and 7d and σ → σ * for 7b, 7c and 7e. The rhodanine derivatives are more reactive and more soluble in polar solvents.</p>


2016 ◽  
Vol 94 (9) ◽  
pp. 794-801
Author(s):  
Kai-Li Zhu ◽  
Le-yan Liu ◽  
Zhi-Yuan Geng

Two series of dyes have been designed and theoretically characterized through density functional theory and time-dependent density functional theory to systematically explore the structure–property relationship of dyes with D–A–π–A architecture and the performance of dye-sensitized solar cells, particularly the influence of the π-bridge, including its alkyl side chain, adding additional conjugate spacer, displacement, and separation of π-bridge. Key parameters associated with the short-circuit current density Jsc and open-circuit photovoltage Voc were characterized and analyzed in detail. All of the analysis results manifest that dye H1 should be the best candidate to fabricate dye-sensitized solar cells owing to the best optical absorption property (a broad absorption band from 300 to 900 nm for adsorbed dye) and other outstanding parameters.


2018 ◽  
Vol 6 (30) ◽  
pp. 8226-8233 ◽  
Author(s):  
Longhua Li ◽  
Jianli Mi ◽  
Yangchun Yong ◽  
Baodong Mao ◽  
Weidong Shi

Density functional theory (DFT) and non-equilibrium Green's function (NEGF) calculations give an insight at an atomistic level into the structure–property relationship of the nickel oxide/organometal halide perovskite (NiO/MAPbI3) interface.


2018 ◽  
Vol 20 (40) ◽  
pp. 25822-25828 ◽  
Author(s):  
Jonathan J. Heath ◽  
Marcelo A. Kuroda

We characterize the structure–property relationship of alkali metal elements in oxygen-passivated graphene pores using the density functional theory. We identify common trends in these systems based on their structural and electronic properties.


2021 ◽  
Author(s):  
Agnieszka Kącka-Zych ◽  
Radomir Jasinski

Conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives has been explored using Density Functional Theory (DFT) method within the context of the Molecular Electron Density Theory (MEDT) at the B97XD(PCM)/6-311G(d,p)...


2021 ◽  
Vol 11 (8) ◽  
pp. 3496
Author(s):  
Dmitry A. Kolosov ◽  
Olga E. Glukhova

In this work, using the first-principle density functional theory (DFT) method, we study the properties of a new material based on pillared graphene and the icosahedral clusters of boron B12 as a supercapacitor electrode material. The new composite material demonstrates a high specific quantum capacitance, specific charge density, and a negative value of heat of formation, which indicates its efficiency. It is shown that the density of electronic states increases during the addition of clusters, which predictably leads to an increase in the electrode conductivity. We predict that the use of a composite based on pillared graphene and boron will increase the efficiency of existing supercapacitors.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


Sign in / Sign up

Export Citation Format

Share Document