scholarly journals Construction of Nonsinusoidal Oscillation Waveform Function and Technological Parameters for Continuous Casting Mold

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chao Zhou ◽  
Xingzhong Zhang ◽  
Fang Wang ◽  
Subo Ren

Nonsinusoidal oscillation techniques can shorten the negative strip time and improve the slab surface quality in the process of steel continuous casting. But the acceleration of nonsinusoidal oscillation is higher than that of the sinusoidal oscillation. So it is easy to result in the impact for the mold movement. To solve this problem, a nonsinusoidal oscillation waveform function of mold was constructed, which had good dynamic characteristics. And the smaller acceleration can reduce the impact of the oscillator. By analyzing the parameters of oscillation technology, the calculation method of each oscillation technological parameter for seven section functions was presented and the multitechnological parameter curves were given. Based on the technological parameters of sinusoidal oscillation, a synchronous control model of nonsinusoidal oscillation was determined. The results show that the parameters can satisfy the limit value in theory, which can enhance the casting speed, surface quality of slab, and provide reference for further practice in industry.

2016 ◽  
Vol 854 ◽  
pp. 255-259
Author(s):  
Klaus Dieter Palm ◽  
Hendrik Busch ◽  
Axel Dusdorf

Using Conti-M® which is a globally unique technology for producing cast-rolled copper strips, MKM has been able to link and optimise the continuous casting and rolling process together with the surface quality of milled strips. The last 15 years have seen many targeted projects for process, product and quality development. In this article, the process related challenges to optimise the surface quality of casting strip will be highlighted. We will present a process control system and the impact it had in the optimisation of the surface quality.


2010 ◽  
Vol 154-155 ◽  
pp. 334-337
Author(s):  
Xin Jin ◽  
Ting Zhi Ren

A new non-sinusoidal oscillation waveform which is shown by waveform distortional rate was advanced. The amplitude, oscillation frequency, waveform distortional rate and casting velocity were established for a computer model of the continuous casting process. The range of waveform distortional rate was ascertained. The choosing method of amplitude and oscillation frequency was given. These offered a theory basis to the application of the advanced technique. Industrial scale experiments showed the new type waveform is effective on improving the quality of continuous casting slab and reducing breakout.


2012 ◽  
Vol 57 (1) ◽  
pp. 371-377 ◽  
Author(s):  
A. Sorek ◽  
Z. Kudliński

The Influence of the Near-Meniscus Zone in Continuous Casting Mold on the Surface Quality of the Continuous Casting IngotsThe physical, chemical and mechanical phenomena which take place in the near-meniscus zone of continuous casting mold are the significant factors influencing the quality of CC ingot and especially the quality of its surface. Such phenomena consist of the following processes: lubrication of the ingot surface by the liquid slag-forming phase of mold powder, creation of meniscus, formation of the specific kind of galvanic cell and connected with this cell ions migration of liquid mold powder. Application of the mold powders is the commonly used lubrication method of the surface of CC ingots in mold (in near-meniscus zone). According to the ionic structure theory of the liquid metallurgical slags the following thesis can be formulated: the liquid slag-forming phase of mold powder is the ionic liquid. The ionic liquid occurs between two metals: the copper wall of mold and the steel surface of ingot can create a specific kind of galvanic cell in the upper part of mold (the near-meniscus zone of mold). The paper presents results of industrial research of low-carbon steel continuous casting. The electromotive force of galvanic cell situated in the upper (near-meniscus) part of CC mold was measured. Moreover, the influence of applied powders with different alkalinity on the character of oscillatory marks forming on the ingot surface was considered. The galvanic cell, which is created in the upper part of mold in the near-meniscus zone, can cause the essential change of the chemical composition of electrolyte (liquid phase of mold powder) in the near-electrodes zones. So in the process the condition of lubrication and character of obtained oscillatory mark can also be changed.


2011 ◽  
Vol 66-68 ◽  
pp. 185-188
Author(s):  
Hong Ming Wang ◽  
Ting Wang Zhang ◽  
Yong Qi Yan ◽  
Bang Min Song ◽  
Gui Rong Li

According to the rule of non-sinusoidal oscillation of continuous casting mold, a mathematical model was established to study the effects of oscillation parameters on the consumption rate of mold flux. The results indicated that the mold flux consumption rate is remarkably affected by the non-sinusoidal factor. This proves that the non-sinusoidal oscillation of mold contributes to increase the flux consumption. Moreover, the amplitude and frequency of mold oscillation have effects on mold flux consumption rate. The non-sinusoidal oscillation parameters must be optimized.


2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


2012 ◽  
Vol 15 (4) ◽  
pp. 340-346 ◽  
Author(s):  
Feng Huang ◽  
Ruirun Chen ◽  
Jingjie Guo ◽  
Hongsheng Ding ◽  
Yanqing Su ◽  
...  

2015 ◽  
Vol 669 ◽  
pp. 443-450
Author(s):  
Jana Gerková ◽  
Ľuboslav Straka

Technological parameters affecting the surface quality of cutting edges in production system with the AWJ technology include cutting head movement speed. The article examines and evaluates the quality of processed surface by the AWJ technology on selected materials as related to the change of cutting head movement speed. It was discovered that the movement speed for the AWJ technology has a significant effect on the surface quality


Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Соловьев ◽  
Dmitriy Solovyev ◽  
Александр Хандожко ◽  
...  

The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.


2021 ◽  
Vol 338 ◽  
pp. 01005
Author(s):  
Damian Dzienniak ◽  
Jan Pawlik

Additive manufacturing has been gaining popularity and availability year by year, which has resulted in its dynamic development. The most common 3D printing method as of today, FDM (Fused Deposition Modeling), owing to its peculiarity, does not always guarantee producing objects with low surface roughness. The authors of the present article have taken on the analysis of the impact of FDM printing on the roughness of the filament thus processed. They also investigate the relationship between the roughness of the unprocessed filament (made of polycaprolactam, that is, polyamide 6 or PA6) with admixtures of other materials (carbon fiber, glass fiber) and the surface quality of the manufactured object. The main subject of the analysis is the side surfaces of 3D prints, as it is their quality that is usually directly dependent on many factors connected with the process of the laying of the consecutive layers. The authors check step by step whether there exists a pronounced relationship between the roughness of the original filament material and the roughness of the obtained surface.


2014 ◽  
Vol 6 ◽  
pp. 752353 ◽  
Author(s):  
Junye Li ◽  
Lifeng Yang ◽  
Weina Liu ◽  
Xuechen Zhang ◽  
Fengyu Sun

In the fields of military and civil uses, some special passages exist in many major parts, such as non-linear tubes. The overall performance is usually decided by the surface quality. Abrasive flow machining (AFM) technology can effectively improve the surface quality of the parts. In order to discuss the mechanism and technology of abrasive flow machining nonlinear tube, the nozzle is picked up as the researching object, and the self-designed polishing liquid is employed to make research on the key technological parameters of abrasive flow machining linear tube. Technological parameters’ impact on surface quality of the parts through the nozzle surface topography and scanning electron microscopy (SEM) map is explored. It is experimentally confirmed that abrasive flow machining can significantly improve surface quality of nonlinear runner, and experimental results can provide technical reference to optimizing study of abrasive flow machining theory.


Sign in / Sign up

Export Citation Format

Share Document