scholarly journals Asymptotic Behavior and Stationary Distribution of a Nonlinear Stochastic Epidemic Model with Relapse and Cure

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiying Ma ◽  
Qing Yi

In this paper, by introducing environmental perturbation, we extend an epidemic model with graded cure, relapse, and nonlinear incidence rate from a deterministic framework to a stochastic differential one. The existence and uniqueness of positive solution for the stochastic system is verified. Using the Lyapunov function method, we estimate the distance between stochastic solutions and the corresponding deterministic system in the time mean sense. Under some acceptable conditions, the solution of the stochastic system oscillates in the vicinity of the disease-free equilibrium if the basic reproductive number R0≤1, while the random solution oscillates near the endemic equilibrium, and the system has a unique stationary distribution if R0>1. Moreover, numerical simulation is conducted to support our theoretical results.

2009 ◽  
Vol 2009 ◽  
pp. 1-18
Author(s):  
Juping Zhang ◽  
Zhen Jin ◽  
Yakui Xue ◽  
Youwen Li

An SIR epidemic model with pulse birth and standard incidence is presented. The dynamics of the epidemic model is analyzed. The basic reproductive numberR∗is defined. It is proved that the infection-free periodic solution is global asymptotically stable ifR∗<1. The infection-free periodic solution is unstable and the disease is uniform persistent ifR∗>1. Our theoretical results are confirmed by numerical simulations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramziya Rifhat ◽  
Zhidong Teng ◽  
Chunxia Wang

AbstractIn this paper, a stochastic SIRV epidemic model with general nonlinear incidence and vaccination is investigated. The value of our study lies in two aspects. Mathematically, with the help of Lyapunov function method and stochastic analysis theory, we obtain a stochastic threshold of the model that completely determines the extinction and persistence of the epidemic. Epidemiologically, we find that random fluctuations can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics. In other words, neglecting random perturbations overestimates the ability of the disease to spread. The numerical simulations are given to illustrate the main theoretical results.


Author(s):  
Laid Chahrazed

In this work, we consider a nonlinear epidemic model with temporary immunity and saturated incidence rate. Size N(t) at time t, is divided into three sub classes, with N(t)=S(t)+I(t)+Q(t); where S(t), I(t) and Q(t) denote the sizes of the population susceptible to disease, infectious and quarantine members with the possibility of infection through temporary immunity, respectively. We have made the following contributions: The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determine by the ratio called the basic reproductive number, This paper study the reduce model with replace S with N, which does not have non-trivial periodic orbits with conditions. The endemic -disease point is globally asymptotically stable if R0 ˃1; and study some proprieties of equilibrium with theorems under some conditions. Finally the stochastic stabilities with the proof of some theorems. In this work, we have used the different references cited in different studies and especially the writing of the non-linear epidemic mathematical model with [1-7]. We have used the other references for the study the different stability and other sections with [8-26]; and sometimes the previous references.


2020 ◽  
Vol 38 (2) ◽  
pp. 133-163
Author(s):  
Cristhian Montoya ◽  
Jhoana P. Romero Leiton

In this work, two mathematical models for malaria under resistance are presented. More precisely, the first model shows the interaction between humans and mosquitoes inside a patch under infection of malaria when the human population is resistant to antimalarial drug and mosquitoes population is resistant to insecticides. For the second model, human–mosquitoes population movements in two patches is analyzed under the same malaria transmission dynamic established in a patch. For a single patch, existence and stability conditions for the equilibrium solutions in terms of the local basic reproductive number are developed. These results reveal the existence of a forward bifurcation and the global stability of disease–free equilibrium. In the case of two patches, a theoretical and numerical framework on sensitivity analysis of parameters is presented. After that, the use of antimalarial drugs and insecticides are incorporated as control strategies and an optimal control problem is formulated. Numerical experiments are carried out in both models to show the feasibility of our theoretical results.


2020 ◽  
Vol 9 (4) ◽  
pp. 944 ◽  
Author(s):  
Kentaro Iwata ◽  
Chisato Miyakoshi

Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. Even though it began to spread to many other parts of the world, such as other Asian countries, the Americas, Europe, and the Middle East, the impact of secondary outbreaks caused by exported cases outside China remains unclear. We conducted simulations to estimate the impact of potential secondary outbreaks in a community outside China. Simulations using stochastic SEIR model were conducted, assuming one patient was imported to a community. Among 45 possible scenarios we prepared, the worst scenario resulted in the total number of persons recovered or removed to be 997 (95% CrI 990–1000) at day 100 and a maximum number of symptomatic infectious patients per day of 335 (95% CrI 232–478). Calculated mean basic reproductive number (R0) was 6.5 (Interquartile range, IQR 5.6–7.2). However, better case scenarios with different parameters led to no secondary cases. Altering parameters, especially time to hospital visit. could change the impact of a secondary outbreak. With these multiple scenarios with different parameters, healthcare professionals might be able to better prepare for this viral infection.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Zhang ◽  
Li Yingqi ◽  
Wenxiong Xu

We present an SEIS epidemic model with infective force in both latent period and infected period, which has different general saturation incidence rates. It is shown that the global dynamics are completely determined by the basic reproductive number R0. If R0≤1, the disease-free equilibrium is globally asymptotically stable in T by LaSalle’s Invariance Principle, and the disease dies out. Moreover, using the method of autonomous convergence theorem, we obtain that the unique epidemic equilibrium is globally asymptotically stable in T0, and the disease spreads to be endemic.


2007 ◽  
Vol 15 (02) ◽  
pp. 203-218 ◽  
Author(s):  
WENJUN CAO ◽  
ZHEN JIN

In this paper, an SIR epidemic model with constant recruitment is considered. The dynamic behavior of this disease model with constant and pulse birth are analyzed. With constant birth, the infection-free equilibrium is locally and globally stable when the basic reproductive number R0 < 1. However, with pulse birth the system converges to a stable period solution with the number of infectious individuals equal to zero. Furthermore, the local and global stability of the periodic infection-free solution is obtained if the basic reproductive number [Formula: see text]. Numerical simulation shows that the periodic infection-free solution is unstable and the disease will persist when [Formula: see text]. The effectiveness of the constant and pulse birth to eliminating the disease are compared.


2005 ◽  
Vol 08 (04) ◽  
pp. 419-431 ◽  
Author(s):  
GUANG-ZHAO ZENG ◽  
LAN-SUN CHEN

This paper considers an SIRS epidemic model with proportional impulsive vaccination, which may inherently oscillate. We study the ratio-dependent impulsive control and obtain the conditions about the basic reproductive number for which the epidemic-elimination solution is globally asymptotic. On the other hand, if the epidemic turns out to be endemic, we study numerically the influences of impulsive vaccination on the periodic oscillation of a system without impulsion and find sophisticated phenomena such as chaos in this case.


2021 ◽  
Vol 6 (11) ◽  
pp. 12359-12378
Author(s):  
Yuhuai Zhang ◽  
◽  
Xinsheng Ma ◽  
Anwarud Din ◽  
◽  
...  

<abstract><p>In this paper, we propose a novel stochastic SEIQ model of a disease with the general incidence rate and temporary immunity. We first investigate the existence and uniqueness of a global positive solution for the model by constructing a suitable Lyapunov function. Then, we discuss the extinction of the SEIQ epidemic model. Furthermore, a stationary distribution for the model is obtained and the ergodic holds by using the method of Khasminskii. Finally, the theoretical results are verified by some numerical simulations. The simulation results show that the noise intensity has a strong influence on the epidemic spreading.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document