scholarly journals Chemical Characterization and Wound Healing Property of Jacaranda decurrens Cham. (Bignoniaceae): An Experimental Study Based on Molecular Mechanisms

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mariana B. Serra ◽  
Wermerson A. Barroso ◽  
Cláudia Rocha ◽  
Pablo G.R. Furtado ◽  
Antônio C.R. Borges ◽  
...  

Background. Jacaranda decurrens Cham., known as carobinha, is prevalent in the Cerrado biome and presents popular use in treatment of dermatological diseases. The present study aimed to investigate the healing action of topical formulation of Jacaranda decurrens Cham. (FtEHJ) in mice cutaneous lesions. Methods. Phytochemical analysis of J. decurrens hydroalcoholic extract was carried out by using HPLC-PDA-ESI-MS and FIA-ESI-IT-MSn. Swiss mice were treated topically with formulation base (FtB) or Fibrinase® or ointment FtEHJ (15 mg/g; 50 mg/Kg). At the end of treatment periods, the inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the lesions were measured by using ELISA and gene expression of TGF-β, Collagen I, and Collagen III was demonstrated by RTqPCR method and histological evaluation. Results. Ten compounds were identified in the extract, distributed among the classes of flavonoids and triterpenes. Treatment with FtEHJ increased the wound contraction in 24 hours, such as reduction of TNF-α, IL-1β, and IL-6 (pg/mL) cytokines in the lesion. The TGF-β and collagen gene expression was increased and the wound closure accelerated to nine days, with discrete inflammation, collagenization, and accented reepithelialization. Conclusions. The results obtained suggest chemical compounds present in the FtEHJ accelerates wound healing by being a gene expression modulator, and protein content of different molecules are involved in tissue repair.

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 834
Author(s):  
Ekaterina Blinova ◽  
Dmitry Pakhomov ◽  
Denis Shimanovsky ◽  
Marina Kilmyashkina ◽  
Yan Mazov ◽  
...  

Background: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals. Methods: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 mg/mL aquatic spray was used as wound experimental topical therapy. LHT-8-17 toxicity was assessed in human skin epidermal cell culture using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A linear wound was reproduced in 18 outbred white rats with streptozotocin-induced (60 mg/kg i.p.) diabetes; planar cutaneous defect was modelled in 60 C57Bl6 mice with streptozotocin-induced (200 mg/kg i.p.) diabetes and 90 diabetic db/db mice. Firmness of the forming scar was assessed mechanically. Skin defect covering was histologically evaluated on days 5, 10, 15, and 20. Tissue TNF-α, IL-1β and IL-10 levels were determined by quantitative ELISA. Oxidative stress activity was detected by Fe-induced chemiluminescence. Ki-67 expression and CD34 cell positivity were assessed using immunohistochemistry. FGFR3 gene expression was detected by real-time PCR. LHT-8-17 anti-microbial potency was assessed in wound tissues contaminated by MRSA. Results: LHT-8-17 4 mg twice daily accelerated linear and planar wound healing in animals with type 1 and type 2 diabetes. The formulated topical application depressed tissue TNF-α, IL-1β, and oxidative reaction activity along with sustaining both the IL-10 concentration and antioxidant capacity. LHT-8-17 induced Ki-67 positivity of fibroblasts and pro-keratinocytes, upregulated FGFR3 gene expression, and increased tissue vascularization. The formulation possessed anti-microbial properties. Conclusions: The obtained results allow us to consider the formulation as a promising pharmacological agent for diabetic wound topical treatment.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1764
Author(s):  
Izabela Nawrot-Hadzik ◽  
Adam Matkowski ◽  
Artur Pitułaj ◽  
Barbara Sterczała ◽  
Cyprian Olchowy ◽  
...  

Rhizomes of Reynoutria japonica Houtt. are a traditional Chinese medicinal herb (Polygoni cuspidati rhizoma, hu zhang) used for treatment of numerous diseases including wound healing support. The aim of this study was to provide evidence for the value of this herbal drug’s traditional use as a gingival healing treatment as well as to obtain the most active extract. In vitro studies were performed using primary human gingival fibroblasts (HGFs) with determination of viability (MTT assay), cell proliferation (the confocal laser scanning microscope (CLSM) was used to visualize histone 3 expression), cell migration (wound healing assay), and evaluation of the expression of collagen type III (immunocytochemical staining) after incubation with extracts from R. japonica rhizomes (25% or 40% ethanol or 60% acetone). In addition to these extracts, commercial dental rinse (containing chlorhexidine digluconate 0.2%) was tested as the gold standard of choice for gum healing in dental practice. The studied extracts were qualitatively and quantitatively characterized using the validated HPLC/DAD/ESI-HR-QTOF-MS method. Total phenols and tannins content were determined using the Folin–Ciocalteu assay. Low concentration of all extracts after 24 h incubation caused significant increase in HGF viability. This effect was most pronounced at a concentration of 50 µg/mL, which was selected for further experiments. All extracts (at 50 µg/mL) stimulated HGF to proliferate, migrate, and increase collagen III synthesis, but with different strength. The highest stimulated proliferation and migration activity was observed after incubation with 25% EtOH, which according to phytochemical analysis may be related to the highest content of resveratrol and an appropriate composition of procyanidins. The 25% EtOH extract from R. japonica rhizomes appears to be a promising gingival wound healing agent worthy of animal and clinical trials.


2017 ◽  
Vol 20 (3) ◽  
pp. 1-9
Author(s):  
Ogwang Engeu ◽  
Angupale Ronald ◽  
Oloro Joseph ◽  
Baruga Evariste

2018 ◽  
Vol 117 ◽  
pp. 1361-1366 ◽  
Author(s):  
Liana Inara de Jesus ◽  
Fhernanda R. Smiderle ◽  
Andrea C. Ruthes ◽  
Francisco Vilaplana ◽  
Fernando Tonholi Dal'Lin ◽  
...  

2012 ◽  
pp. 241-250 ◽  
Author(s):  
P. GÁL ◽  
T. VASILENKO ◽  
I. KOVÁČ ◽  
M. KOSTELNÍKOVÁ ◽  
J. JAKUBČO ◽  
...  

Previously, we found that treatment of cutaneous wounds with Atropa belladonna L. (AB) revealed shortened process of acute inflammation as well as increased tensile strength and collagen deposition in healing skin wounds (Gál et al. 2009). To better understand AB effect on skin wound healing male Sprague-Dawley rats were submitted to one round full thickness skin wound on the back. In two experimental groups two different concentrations of AB extract were daily applied whereas the control group remained untreated. For histological evaluation samples were removed on day 21 after surgery and stained for wide spectrum cytokeratin, collagen III, fibronectin, galectin-1, and vimentin. In addition, in the in vitro study different concentration of AB extract were used to evaluate differences in HaCaT keratinocytes proliferation and differentiation by detection of Ki67 and keratin-19 expressions. Furthermore, to assess ECM formation of human dermal fibroblasts on the in vitro level fibronectin and galectin-1 were visualized. Our study showed that AB induces fibronectin and galectin-1 rich ECM formation in vitro and in vivo. In addition, the proliferation of keratinocytes was also increased. In conclusion, AB is an effective modulator of skin wound healing. Nevertheless, further research is needed to find optimal therapeutic concentration and exact underlying mechanism of action.


2021 ◽  
Vol 22 (22) ◽  
pp. 12426
Author(s):  
Christelle Gross ◽  
Gaëtan Le-Bel ◽  
Pascale Desjardins ◽  
Manel Benhassine ◽  
Lucie Germain ◽  
...  

In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


Sign in / Sign up

Export Citation Format

Share Document