scholarly journals Molecular Mechanism of the Effect of Huanglian Jiedu Decoction on Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking

2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Bei Yin ◽  
Yi-Ming Bi ◽  
Guan-Jie Fan ◽  
Ya-Qing Xia

Background. Huanglian Jiedu Decoction (HLJDD) is a Traditional Chinese Medicine (TCM) formula comprising four herbal medicines. This decoction has long been used in China for clinically treating T2DM. However, the molecular mechanism of HLJDD treat for T2DM is still not fully known. Hence, this study was designed to reveal the synergistic mechanism of HLJDD formula in the treatment of T2DM by using network pharmacology method and molecular docking. Methods. Retrieving and screening of active components of different herbs in HLJDD and corresponding T2DM-related target genes across multiple databases. Subsequently, STRING and Cytoscape were applied to analysis and construct PPI network. In addition, cluster and topological analysis were employed for the analysis of PPI networks. Then, the GO and KEGG enrichment analysis were performed by using ClueGO tool. Finally, the differentially expressed analysis was used to verify whether the expression of key target genes in T2DM and non-T2DM samples was statistically significant, and the binding capacity between active components and key targets was validated by molecular docking using AutoDock. Results. There are 65 active components involved in 197 T2DM-related targets that are identified in HLJDD formula. What is more, 39 key targets (AKT1, IL-6, FOS, VEGFA, CASP3, etc.) and 3 clusters were obtained after topological and cluster analysis. Further, GO and KEGG analysis showed that HLJDD may play an important role in treating T2DM and its complications by synergistically regulating many biological processes and pathways which participated in signaling transduction, inflammatory response, apoptotic process, and vascular processes. Differentially expressed analysis showed that AKT1, IL-6, and FOS were upregulated in T2DM samples and a significant between sample differential expression. These results were validated by molecular docking, which identified 5 high-affinity active components in HLJDD, including quercetin, wogonin, baicalein, kaempferol, and oroxylin A. Conclusion. Our research firstly revealed the basic pharmacological effects and relevant mechanisms of the HLJDD in the treatment of T2DM and its complications. The prediction results might facilitate the development of HLJDD or its active compounds as alternative therapy for T2DM. However, more pharmacological experiments should be performed for verification.

2021 ◽  
Author(s):  
Jing Yang ◽  
Chao-Tao Tang ◽  
Ruiri Jin ◽  
Bixia Liu ◽  
Peng Wang ◽  
...  

Abstract Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC by means of network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are considered to be very important to PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had good affinity with Hub gene. This study systematically elucidates the "multi-component, multi-target, multi-pathway" mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Wu ◽  
Xinqiao Liu ◽  
Guiwei Li

AbstractHuangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein–protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.


2021 ◽  
Author(s):  
Xi Cen ◽  
Yan Wang ◽  
LeiLei Zhang ◽  
XiaoXiao Xue ◽  
Yan Wang ◽  
...  

Abstract BackgroundType 2 diabetes mellitus (T2DM) is regarded as Pi Dan disease in traditional Chinese medicine (TCM). Dahuang Huanglian Xiexin Decoction (DHXD), a classical TCM formula, has been used for treating Pi Dan disease in clinic, its pharmacological mechanism has not been elucidated. MethodsThis study used network pharmacological analysis and molecular docking approach to explore the mechanism of DHXD on T2DM. Firstly, the compounds in DHXD were obtained from TCMSP and TCMID databases, the potential targets were determined based on TCMSP and UniProt databases. Next, Genecards, Digenet and UniProt databases were used to identify the targets of T2DM. Then, the protein-protein interaction (PPI) network was established with overlapping genes of T2DM and compounds, and the core targets in the network were identified and analyzed. Then, the David database was used for GO and KEGG enrichment analysis. Finally, the target genes were selected and the molecular docking was completed by Autodock software to observe the binding level of active components with target genes.ResultsA total of 397 related components and 128 overlapping genes were identified. After enrichment analysis, it was found that HIF-1, TNF, IL-17 and other signaling pathways, as well as DNA transcription, gene expression, apoptosis and other cellular biological processes had the strongest correlation with the treatment of T2DM by DHXD, and most of them occurred in the extracellular space, plasma membrane and other places, which were related to enzyme binding and protein binding. In addition, 42 core genes of DHXD, such as VEGFA, TP53 and MAPK1, were considered as potential therapeutic targets, indicating the potential mechanism of DHXD on T2DM. Finally, the results of molecular docking showed that HIF-1 pathway had strong correlation with the target genes INSR and GLUT4, quercetin and berberine had the strongest binding power with them respectively.ConclusionThis study summarized the main components of DHXD in the treatment of T2DM, identified the core genes and pathways, and systematically analyzed the interaction of related targets, trying to lay the foundation for clarifying the potential mechanism of DHXD on T2DM, so as to carry out further research in the future.


Author(s):  
Yu-cheng Liao ◽  
Jing-wen Wang ◽  
Qian Yang ◽  
Wen-jun Wanga ◽  
Chao Zhao ◽  
...  

Background: Frankincense has been used as a traditional medicine in many countries. It is an important herb with multiple targets and therapeutic effects including liver protection. However, its mechanism of action in drug-induced liver injury (DILI) remains unknown. Objective: The purpose of this work was to elucidate the active components, core genes, and molecular mechanism of frankincense in DILI through network pharmacology and molecular docking approaches. Method: The active components of frankincense and its target genes were obtained from the BATMAN-TCM database, and the DILI target genes were obtained from the GeneCards and DrugBank databases. Cytoscape was used to create the compound-shared gene target network. STRING and DAVID software were used to analyze key targets and pathway enrichment. Autodock Vina software was used for molecular docking. Results: Network analysis identified 16 compounds in frankincense and 103 target genes that are highly related to DILI. The core genes in the protein-protein interaction network are INS, IL6, TP53, TNF, SRC, PTGS2, IL1B, CAT, IL10, and IGF1. Furthermore, GO and KEGG pathway enrichment analyses indicated that the effect of frankincense on DILI is related to positive regulation of transcription from RNA polymerase II promoter and inflammatory response. Core pathways such as the HIF-1, TNF, FoxO, PI3K-Akt, and the sphingolipid signaling pathway are closely related to DILI. Conclusion: This study revealed the chemical constituents and pharmacological effects of frankincense and unveiled potential DILI healing targets. This study could provide insights for further development of drugs that specifically target DILI.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guishu Wang ◽  
Bo Zhou ◽  
Zheyi Wang ◽  
Yufeng Meng ◽  
Yaqian Liu ◽  
...  

BackgroundAsthma is a chronic inflammatory disease characterized by Th2-predominant inflammation and airway remodeling. Modified Guo Min decoction (MGMD) has been an extensive practical strategy for allergic disorders in China. Although its potential anti-asthmatic activity has been reported, the exact mechanism of action of MGMD in asthma remains unexplored.MethodsNetwork pharmacology approach was employed to predict the active components, potential targets, and molecular mechanism of MGMD for asthma treatment, including drug-likeness evaluation, oral bioavailability prediction, protein–protein interaction (PPI) network construction and analysis, Gene Ontology (GO) terms, and Reactome pathway annotation. Molecular docking was carried out to investigate interactions between active compounds and potential targets.ResultsA total of 92 active compounds and 72 anti-asthma targets of MGMD were selected for analysis. The GO enrichment analysis results indicated that the anti-asthmatic targets of MGMD mainly participate in inflammatory and in airway remolding processes. The Reactome pathway analysis showed that MGMD prevents asthma mainly through regulation of the IL-4 and IL-13 signaling and the specialized pro-resolving mediators (SPMs) biosynthesis. Molecular docking results suggest that each bioactive compounds (quercetin, wogonin, luteolin, naringenin, and kaempferol) is capable to bind with STAT3, PTGS2, JUN, VEGFA, EGFR, and ALOX5.ConclusionThis study revealed the active ingredients and potential molecular mechanism by which MGMD treatment is effective against airway inflammation and remodeling in asthma through regulating IL-4 and IL-13 signaling and SPMs biosynthesis.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110477
Author(s):  
Fei Wang ◽  
Jia-Hui Chen ◽  
Bo Liu ◽  
Ting Zhang

Purpose: Prescriptions of Han-Shi-Yu-Fei (HSYF), Han-Shi-Zu-Fei (HSZF), and Yi-Du-Bi-Fei (YDBF) were effective in treating COVID-19. Based on network pharmacology and molecular docking, overlapping Traditional Chinese medicines (TCMs), their active components, and core targets were explored in this study. Methods: First, the overlapping TCMs and their active components were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) by evaluating Oral Bioactivity (OB) and Drug Likeness (DL). The overlapping targets of potential components and COVID-19 were collected by SwissTargetPrediction, Gene Cards, and Venn 2.1.0 databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were analyzed via DAVID6.8.1 database. Through comprehensive analysis of the “prescriptions-TCMs-components” (P-T-C), “components-targets-pathways” (C-T-P) and “protein–protein interaction” (PPI) networks constructed by Cytoscape 3.7.1 software, the active components and core targets were obtained. Finally, the binding energies of these components with ACE2 and SARS-CoV-2 3CL were analyzed by AutDockTools-1.5.6 and PyMOL software. Results: In all, five overlapping TCMs, 40 potential active components, and 47 candidate targets were obtained and analyzed in these prescriptions. There were 288 GO entries ( P < 0.05), including 211 biological process (BP), 40 cell composition (CC), and 37 molecular function (MF) entries. Most of the 105 KEGG pathways ( P < 0.05) were involved with viral infection and inflammation. Through “PPI” and “C-T-P” networks, the core targets (EGFR, PTGS2, CDK2, GSK3B, PIK3R1, and MAPK3) and active components (Q27134551, acanthoside B, neohesperidin, and irisolidone) with high degrees were obtained. Molecular docking results showed that the above-mentioned four components could inhibit the binding of ACE2 and SARS-COV-2 3CL to protect against COVID-19. Conclusion: In this study, the active components and core targets of three prescriptions in the treatment of COVID-19 were elaborated by network pharmacology and molecular docking, providing a reference for their applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Liu ◽  
Yihua Fan ◽  
Chunying Tian ◽  
Yue Jin ◽  
Shaopeng Du ◽  
...  

Background. Huangqi Guizhi Wuwu Decoction (HGWD) has been applied in the treatment of joint pain for more than 1000 years in China. Currently, most physicians use HGWD to treat rheumatoid arthritis (RA), and it has proved to have high efficacy. Therefore, it is necessary to explore the potential mechanism of action of HGWD in RA treatment based on network pharmacology and molecular docking methods. Methods. The active compounds of HGWD were collected, and their targets were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and DrugBank database, respectively. The RA-related targets were retrieved by analyzing the differentially expressed genes between RA patients and healthy individuals. Subsequently, the compound-target network of HGWD was constructed and visualized through Cytoscape 3.8.0 software. Protein-protein interaction (PPI) network was constructed to explore the potential mechanisms of HGWD on RA using the plugin BisoGenet of Cytoscape 3.8.0 software. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed in R software (Bioconductor, clusterProfiler). Afterward, molecular docking was used to analyze the binding force of the top 10 active compounds with target proteins of VCAM1, CTNNB1, and JUN. Results. Cumulatively, 790 active compounds and 1006 targets of HGWD were identified. A total of 4570 differentially expressed genes of RA with a p value <0.05 and log 2fold change > 0.5 were collected. Moreover, 739 GO entries of HGWD on RA were identified, and 79 pathways were screened based on GO and KEGG analysis. The core target gene of HGWD in RA treatment was JUN. Other key target genes included FOS, CCND1, IL6, E2F2, and ICAM1. It was confirmed that the TNF signaling pathway and IL-17 signaling pathway are important pathways of HGWD in the treatment of RA. The molecular docking results revealed that the top 10 active compounds of HGWD had a strong binding to the target proteins of VCAM1, CTNNB1, and JUN. Conclusion. HGWD has important active compounds such as quercetin, kaempferol, and beta-sitosterol, which exert its therapeutic effect on multiple targets and multiple pathways.


2020 ◽  
Author(s):  
Zhen Wu ◽  
Yujiao Yang ◽  
Yao Wei ◽  
Xu-guang Hu

Abstract Background: Finger citron (FS) is one of many traditional Chinese herbs that have been used to treat obesity. However, the active components and potential targets of FS in improving obesity remain unclear. Methods:The aim of this study was to elucidate the pharmacological effects and mechanisms of FS on obesity using network pharmacology analysis. We used network pharmacology to determine the active components, potential targets and mechanisms in the treatment of obesity.Results:We identified 25 active ingredients of FS such as diosmetin, hesperidin and sitosterol-alpha1 with important biological effect. A total of 258 key targets were screened, containing TNF,NOS2, MAPK8 which were found to be enriched in 27 signaling pathways, such as apoptosis, TNF, PPAR and AKT1, and Insulin resistance signaling pathways. Moreover, molecular docking analysis showed that the main ingredients were tightly bound to the core targets, further confirming the effects of weight loss. Conclusion: Based on network pharmacology and molecular docking analysis, our study provides insights into the potential mechanism of FS in ameliorating obesity after screening for associated key target genes and signaling pathways. These findings further provide a theoretical basis for further pharmacological research into the potential mechanism of FS in treating obesity.


2020 ◽  
Author(s):  
xia liu ◽  
Mingchun Huang ◽  
Chen Yang ◽  
Qin Wang ◽  
Mei Zhang

Abstract Introduction: As a traditional Chinese medicine (TCM), Curculigo orchioides Gaertn. (Xianmao) has been widely used to treat bone-related diseases. However, the active components of this TCM, and the specific mechanisms by which it exerts effect, have yet to be elucidated. To identify potential targets for orcinol glucoside (OG), an active constituent of C. orchioides, during the treatment of osteoporosis (OP) by adopting a network pharmacology approach. Methods: First, we mined the Similarity ensemble approach (SEA), SwissTargetPrediction, DisGeNET, and Genecards databases were mined for data related to the prediction of OG- and OP-related targets. Next, we identified the common targets for OG and OP, and then used STRING software to create a protein-protein interaction (PPI) network. Then, we used topological analysis to identify which of the common targets were most significant. Then, we used the common significant targets and g:profiler to perform gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes ( KEGG) pathway enrichment analysis. Finally, we used molecular docking to predict the targets of OG that were most relevant to the treatment of OP and investigated the potential pharmacological mechanisms that might be involved. Results: In total, 130 potential targets of OG, and 4582 targets relevant to OP, were subjected to network analysis. There were 73 common targets; these identified the principal pathways linked to OP. In addition, topological analysis identified 14 key targets. Most of the predicted targets played crucial roles in the PI3K-AKT signaling pathway. Molecular docking identified ten core targets (VEGFA, IL6, EGFR, MAPK1, HRAS, CCND1, FGF2, IL2, MCL1 and CDK4), thus indicating that OG may promote osteoblast proliferation and differentiation by accelerating progression of the cell cycle.Conclusions: This research provides a theoretical base for identifying the specific potential mechanisms of OG in treatment of OP.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Chenxi Li ◽  
Lei Xu ◽  
Xuyao Lin ◽  
Qingrui Li ◽  
Shaoming Liu ◽  
...  

Background. Using network pharmacology and molecular docking, this study aimed to explore the active pharmaceutical ingredients (APIs) and molecular mechanism of Qinshi Simiao San (QSSMS) in the treatment of chronic prostatitis (CP) and verify our findings in the rat model. Methods. The APIs of QSSMS and the common targets of QSSMS and CP were screened from the TCMSP database. The STRING database and Cytoscape software were used to construct the network graph. The enriched GO and KEGG pathways were displayed by David software and R software. Molecular docking was performed to visualize key components and target genes. In addition, the rats model of CP was established to verify the molecular mechanism of QSSMS. Results. Network pharmacology showed that the APIs of QSSMS mainly included quercetin, kaempferol, formononetin, isorhamnetin, and calycosin. QSSMS alleviated CP mainly through the negative regulation of the apoptotic process, oxidation-reduction process, inflammatory response, and immune response. Molecular docking showed that the APIs could bind to the corresponding targets. QSSMS repaired the pathological damage of prostate tissue, upregulated the expression of oxidative stress scavenging enzymes CAT and SOD, and downregulated the peroxidative product MDA, inflammatory factors IL-1β, IL-6, TNF-α, COX-2, PGE2, and NGF, and immune factors IgG and SIgA. Conclusion. The APIs in QSSMS may inhibit inflammation in the rat CP model by regulating immune and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document