scholarly journals Numerical Simulations of Air Cavities in Inclined Plunging Jets

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Qian Sun ◽  
Hao Yuan ◽  
Lei Jiang ◽  
Guangxiang Xu ◽  
Xujin Zhang

The dynamic process of circular water jets plunging into a quiescent pool was analyzed in this study based on the RNG k∼ε turbulence model and VOF method. The effects of jet velocity and inclination angles relative to horizontal on the cavity shapes and sizes were analyzed. The simulation successfully captured the formation, development, pinch-off, and disintegration phenomena of cavities. The shape of the cavity is mainly affected by the impact angle, while the impact velocity mainly affects the size of the cavity. The cavity pinch-off initially appears at a certain point in any direction for vertical jets, while the cavity in the opposite direction of flow pinch-off appears before the cavity in the direction of flow for inclined jets. Before cavity pinch-off, the maximum radial and axial sizes of the cavity generally increase with the impact velocity and the time after impingement. The axial penetration velocity of the cavity tip is approximately half of the impact velocity, which is consistent with previous research. Finally, based on the statistics of the cavity sizes, empirical formulas for predicting the maximum radial and axial sizes of the cavity were established.

2021 ◽  
Author(s):  
Mohamad Nasr ◽  
Thomas Geay ◽  
Sébastien Zanker ◽  
Recking Alain

<p>Quantifying bedload transport is important for many applications such as river management and hydraulic structures protection. Bedload flux measurements can be achieved using physical sampler methods. However, these methods are expensive, time-consuming, and difficult to operate during high discharge events. Besides, these methods do not permit to capture the spatial and temporal variability of bedload transport flux. Recently, alternative measuring technologies have been developed to continuously monitor bedload flux and grain size distribution using passive or active sensors. Among them, the hydrophone was used to monitor bedload transport by recording the sounds generated by bedload particles colliding on the river bed (referred as self-generated noise SGN). The acoustic power of SGN was correlated with bedload flux in field experiments. To better understand these experimental results and to estimate measurement uncertainties, we developed a theoretical model to simulate the SGN. The model computes an estimation of the power spectral density (PSD)by considering the contribution of all signals generated by impacts between bedload particles and the riverbed, and accounting for the attenuation of the acoustic signal between the source and the hydrophone position due to river propagation effects,. In this model, we</p><p>The energy of acoustic noise generated from the collision between two particles is mainly dependent on the transported particles' diameter and the impact velocity. We tested different empirical formulas for the estimation of the number of impact (impact rate) and the impact velocity depending on particle size and hydraulic conditions. To characterize the acoustic power losses as a function of distance and frequency, we used an attenuation function which was experimentally calibrated for different French rivers.</p><p>We tested the model on a field dataset comprising acoustic and bedload flux measurements. The results indicate that the PSD model allows estimating acoustic power (in between a range of one order of magnitude) for most of the rivers considered.  The model sensitivity was evaluated. In particular, we observed that it is very sensitive to the empirical formulas used to determine the impact rate and impact speed. In addition, special attention should be kept in mind on the assumption of the grain size distribution of riverbed which can generate large variability in some rivers particularly in rivers with a significant sand fraction.</p>


Author(s):  
Akemi Nishida ◽  
Minoru Nagai ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulas have been proposed for evaluating local damage to reinforced concrete (RC) structures caused by impacts of rigid missiles. Most of these formulas have been derived based on impact tests normal to the target structures. Up to now, few impact tests oblique to the target structures have been carried out. This study has been conducted with the purpose of proposing a new formula for evaluating the local damage caused by oblique impacts based on previous experimental and simulation results. In this paper, the results of simulation analyses for evaluating the local damage to a RC panel subjected to normal and oblique impacts by rigid and soft missiles, by using the simulation method that was validated using the results of previous impact experiments. Based on the results of these simulation analyses, the effects of the rigidity of the missile as well as the impact angle on the local damage to the target structures are clarified.


2015 ◽  
Vol 2015 ◽  
pp. 1-31 ◽  
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Uttam Kumar Debnath ◽  
Dewan Muhammad Nuruzzaman ◽  
Md. Monirul Islam

The erosion characteristics of gunmetal have been evaluated practically at different operating conditions. Asymmetrical silica sand (SiO2) is taken into account as erodent within range of 300–600 μm. The impact velocity within 30–50 m/sec, impact angle 15–900, and stand off distance 15–25 mm are inspected as other relevant operating test conditions. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested gunmetal. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of gunmetal reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η), and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s and ANOVA concept.S/Nratio indicates that there are 1.72% deviations that are estimated between predicted and experimental results. To elaborately analyze the results, ANN and GMDH methods are mentioned. After erosion process of tested composite, the damage propagation on surfaces is examined using SEM for the confirmation of possible nature of wear behavior. The elemental composition of eroded test samples at varying percentage of gunmetal is analyzed by EDX analysis.


2016 ◽  
Vol 877 ◽  
pp. 655-661 ◽  
Author(s):  
Junto Nishiwaki ◽  
Takashi Kambe ◽  
Yasutaka Kedo ◽  
Yohei Harada ◽  
Shinji Muraishi ◽  
...  

Magnetic pulse welding (MPW) which is one of the impact welding methods is suitable for a wide variety of combinations of similar and dissimilar metals. The flyer plate is accelerated by electromagnetic force and collided to the parent plate. A characteristic wavy interface is formed. The impact velocity and impact angle of the flyer plate during impact are important parameters which affect the interface morphology. In the case of dissimilar metals (e.g. Al/Cu, Al/Fe), the intermediate layer (such as intermetallic compound (IMC)) is formed by wavy interface formation and local temperature increase. The intermediate layer often decreases the bonding strength. Wavy interface formation mechanism and temperature increase at the joint interface should be investigated in order to obtain the dissimilar metal joint with high bonding strength. In this study, the impact velocity and impact angle of the flyer plate were obtained by using ANSYS Emag-Mechanical. Based on the obtained impact velocity and impact angle of the flyer plate in the MPW, the wavy interface formation and temperature change were reproduced by using ANSYS Autodyn for solving non-liner dynamics problems. Al sheets and Cu sheets were joined by the MPW. The joint interface was observed by OM and SEM and compared to the simulation result.


Author(s):  
Mohammad A Chowdhury ◽  
Uttam K Debnath ◽  
Dewan M Nuruzzaman ◽  
Md. Monirul Islam

The erosion behaviors of aluminum alloy have been evaluated practically at different test conditions under ambient temperature. Irregular silica sand (SiO2) is used as an erodent within the range of 300–600 µm. The impact velocity within 30–50 m/s, impact angle 15–90°, and stand-off distance 15–25 mm considered as related parameters. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested alloy. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of aluminum alloy reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η) and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s concept to ensure the minimization of observations for clarification of results in alternative process. ANOVA data analysis is considered to signify the interaction of tested parameters as well as identifying most influencing operating parameter. S/N ratio indicates that there are 2.92% deviations estimated between predicted and experimental results. To elaborately analyze the results, GMDH method is mentioned. After erosion process of the tested composite, the damage propagation on the surfaces is examined using SEM for confirming wear mechanisms. The elemental composition of eroded test samples at varying percentage of aluminum is analyzed by energy dispersive X-ray spectroscopy analysis.


1978 ◽  
Author(s):  
Max Freedman

Erosion tests were run to obtain data for designing a water-cooled gas turbine collection shroud. All tests utilized a coherent stream of water ejected from a static nozzle against stationary small block specimens. Twenty-one tests were run with aluminum specimens and 16 more tests with other materials. The impact velocity was varied from 165 to 270 m/s (540 to 890 fps). The impact angle was varied from 10 to 90 deg. The mass loss rate results generally show four erosion regions, which are consistent with the literature. A correlation between regions two and four was found. Aluminum specimen erosion rate was found to be unexpectedly high with impact angles of 10 deg and moderate-to-high impact velocity. No report of previous liquid erosion work at impact angles less than 30 deg was found; since it is expected that water-cooled gas turbines will operate at impact angles of about 15 deg, erosion in this low impact angle region should be studied. If the correlation between erosion regions two and four can be quantized, then very short-time tests could be used to predict long-term erosion at minimal cost.


2011 ◽  
Vol 492 ◽  
pp. 43-46
Author(s):  
Xiu Fang Wang ◽  
Yi Wang Bao ◽  
Yan Qiu ◽  
Xiao Gen Liu ◽  
Yuan Tian

Spherical impact indentation tests with different impact angles (90°, 60°, 45°, and 30°) was carried out to understand the effect of impact angles on damage degree of cement clinker. A linear rail which can adjust angle to alter impact velocity was used to guide the slipping impact head to impact the sample. The different steel wedge was used to change the impact angle. It is found that the area of damage surface for cement clinker is most serious the peak impact force for surface damage decreases but the contact indentation becomes longer with decreasing impact angle when the impact angle is 45°. Under almost the same impact velocity, the smaller the impact angle, the higher the impulse, the longer contact time, and the peak impact force of 45° is maximum.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Hitoshi Fujimoto ◽  
Ryota Doi ◽  
Hirohiko Takuda

The motions of liquid droplets impinging on a solid substrate have been studied experimentally in fundamental research on various types of industrial applications, including spray cooling. The oblique collision of a single water droplet with a hot Inconel 625 alloy surface has been investigated by means of a two-directional flash photography technique that uses two digital still cameras and three flash units. The experiments were conducted under the following conditions. The preimpact diameter of the droplets was approximately 0.6 mm, the impact velocity was 1.9–3.1 m/s, and the temperature of the Inconel 625 alloy surface ranged from 170 °C to 500 °C. The impact angle of droplets on the solid surface was in the range 45 deg–90 deg. Experiments using 2.5 mm diameter droplets at an impact velocity of 0.84–1.4 m/s were also conducted at the surface temperature of 500 °C. At surface temperatures of 200 °C, 300 °C, and 400 °C, the droplet deforms into an asymmetric shape and moves downward along the tilted surface. Numerous secondary droplets jet upward from the deforming droplet as a result of the blowout of vapor bubbles into the atmosphere. At a surface temperature of 500 °C and a low Weber number Wen based on the normal velocity component to the solid surface, no secondary droplets are observed. The droplet rebounds off the solid without disintegrating. The droplet becomes almost axisymmetric in shape during the collision regardless of the impact angle. The dimensionless collision behaviors of large and small droplets were similar for the same Wen when the temperature was 500 °C. Using Wen, we investigated the deformation characteristics of droplets in oblique collisions.


Author(s):  
Akemi Nishida ◽  
Yoshimi Ohta ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulas have been proposed for evaluating local damage to reinforced concrete structures caused by impacts of rigid projectiles. Most of these formulas have been derived based on impact tests perpendicular to the target structures. Up to now, few impact tests oblique to the target structures have been carried out. This study has been conducted with the purpose of proposing a new formula for evaluating the local damage caused by oblique impacts based on previous experimental and simulation results. In this paper, the results of simulation analyses for evaluating the local damage to reinforced concrete panels subjected to normal and oblique impacts by deformable projectile, by using the simulation method that the validity was confirmed through simulation analysis of past impact experimental results. Based on the results of these simulation analyses, the quantitative evaluation of reduction effects in the local damage caused by the difference of the impact angle is investigated.


2020 ◽  
Vol 39 (1) ◽  
pp. 63-75
Author(s):  
Rajesh Kumar Behera ◽  
Birajendu Prasad Samal ◽  
Sarat Chandra Panigrahi ◽  
Sudhansu Ranjan Das

Abstract Metal matrix composites are expanding their range every day due to their various industrial applications in manufacturing sectors, to attain high performance and favorable characteristics such as light weight, more excellent corrosion as well as wear resistance, high specific strength and high temperature-resistance than conventional materials. This study deals with analysis on erosion wear characteristic and corrosion behavior of newly-engineered aluminum metal–matrix composite (Al–0.5Si–0.5Mg–2.5Cu–5SiC) developed by powder metallurgy method. Solid particle erosion test was conducted on the newly developed AMMC product and the execution of design of experiments through Taguchi and statistical techniques demonstrates the feasibility of investigating the erosion characterization and behaviors of the composites. Sixteen set of experimental trials were performed by considering three process parameters (impact angle, stand-off distance, and impact velocity) associated with four levels each. Experimental results in accordance of Taguchi’s orthogonal array design of experiments are analyzed by employing analysis of variance (ANOVA), response surface methodology (RSM) and desirability function approach for analysis, predictive modeling and optimization of erosion rate, respectively. Thereafter, an observation on eroded surface morphology is performed under the influence of impact velocity by employing scanning electron microscope (SEM) to entrench the process. Result shows that, the impact velocity followed by impact angle have significant contribution (80.42 and 8.71%, respectively) in improvement of erosion rate. The methodology proposed in this study collects the experimental results and builds a mathematical model in the domain of interest and optimized the process model. Under the highest desirability (1), desirability-function approach of RSM presented the optimal manufacturing conditions at impact velocity of 18 m/s, stand-off distance of 26 mm and impact angle of 67° with estimated erosion rate of 65.155 mg/kg. The experimental data generated for Al–0.5Si–0.5Mg–2.5Cu–5SiC AMMC will be useful for the industry.


Sign in / Sign up

Export Citation Format

Share Document