scholarly journals Corrosion Behaviors of Microarc Oxidation Coating and Anodic Oxidation on 5083 Aluminum Alloy

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Haiou Sun ◽  
Liangcai Li ◽  
Zhongyi Wang ◽  
Bin Liu ◽  
Meng Wang ◽  
...  

The microarc oxidation (MAO) coating and anodic oxidation coating were prepared on 5083 aluminum alloy. The surface morphology, elemental composition, and electrochemical behavior of the two coatings were analyzed. The results proved that the corrosion resistance of the MAO coating is superior than that of the anodic oxidation coating. The protective ability of the coating deteriorated gradually with the increase in immersion time. The corrosion process is controlled by ion diffusion throughout the coatings.

2019 ◽  
Vol 141 (1) ◽  
Author(s):  
Yuntao Cui ◽  
Yujie Ding ◽  
Shuo Xu ◽  
Yushu Wang ◽  
Wei Rao ◽  
...  

Gallium-based liquid metal (LM) inherits excellent thermophysical properties and pollution-free characteristics. However, it has long been a fatal problem that LM would cause serious corrosion and embrittlement on the classical substrate made of aluminum alloys in constructing chip cooling device. Here, anodic oxidation treatment was introduced on processing the aluminum alloy aiming to tackle the corrosion issues. The prepared anodic oxidation aluminum (AAO) coatings were composed of nanopore layers and barrier layers on a high-purity alumina matrix that were manufactured electrochemically. According to the measurement, the effective thermal conductivity of the anodized aluminum alloy increases with the total thickness of sample increasing. When the total thickness L exceeds 5 × 10−3 m, effects of the porous media on effective thermal conductivity are negligible via model simulation and calculation. It was experimentally found that aluminum alloy after surface anodization treatment presented excellent corrosion resistance and outstanding heat transfer performance even when exposed in eutectic gallium–indium (E-GaIn) LM over 200 °C. The convective heat transfer coefficient of LM for anodized sample reached the peak when the heat load is 33.3 W.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Feisen Wang ◽  
Sifei Ai ◽  
Qian Wang ◽  
Yinfen Cheng ◽  
Haiqi Huang ◽  
...  

Purpose The purpose of this paper is to promote the corrosion resistance of the 5083-111H aluminum alloy by laser cleaning. Design/methodology/approach Laser with 2 ns pulse width was adopted in this project and the corrosion resistance of cleaned samples was tested by copper-accelerated salt spray (CASS). The surface morphology, elemental composition and distribution were then characterized by SEM. Moreover, surface morphology, elemental composition and distribution were also tested. Findings Results suggested a higher corrosion resistance was successfully obtained by laser cleaning. Compared with samples cleaned by 2000 grit sandpaper, mechanical cleaning resulted in a 53% larger height difference between the peak and valley. The content of the oxygen is 8.85% on the surface cleaned mechanically and the distribution is dependent on the distribution of aluminum whereas that of the laser cleaning sample is 24.41% and the distribution existed even in the Al-poor area. Originality/value In this project, the 2-ns laser cleaning was proved to have the capability to remove the oxide layer on the aluminum alloy surface while retaining an excellent corrosion resistance and smooth surface. Meanwhile, a thorough elemental distribution and smaller grain size lead to a smaller difference in elemental concentration. This retards the diffusion of oxygen into the substrate and hence increases the corrosion resistance of the surface.


Author(s):  
Hong Pyo Kim ◽  
Dong-Jin Kim ◽  
Hyuk Chul Kwon ◽  
Ji Yeon Park ◽  
Yong Wan Kim

The program for hydrogen production with high temperature nuclear heat has been launched in Korea since 2004. Iodine sulfur (IS) process is one of the promising processes for a hydrogen production because it does not generate a carbon dioxide and massive hydrogen production may be possible. However, the highly corrosive environment of the process is barrier to the application in the industry. Therefore, corrosion behaviors of various materials were evaluated in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Ni base alloys, Fe-Si alloys, Ta, Au, Pt, Zr, SiC and so on. The test environments were boiling 50wt% sulfuric acid without/with HI as an impurity and 98wt% sulfuric acid. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. From the results of the weight loss and potentiodynamic experiments, it was found that a Si enriched oxide is attributable to a corrosion resistance for materials including Si in boiling 98wt% sulfuric acid. Moreover the passive Si enriched film thickness increased with the immersion time leading to an enhancement of the corrosion resistance. Corrosion behaviours of the material tested are discussed in terms of the chemical composition of the materials, a corrosion morphology and the surface layer’s composition.


2020 ◽  
Vol 161 ◽  
pp. 110143 ◽  
Author(s):  
Yusheng Ding ◽  
Xiaolan Wu ◽  
Kunyuan Gao ◽  
Cheng Huang ◽  
Xiangyuan Xiong ◽  
...  

2015 ◽  
Vol 227 ◽  
pp. 479-482
Author(s):  
Jeremiasz Krzysztof Koper ◽  
Jarosław Jakubowicz

The paper describes anodic oxidation of titanium surface in a potential range from 30 to 240 V in a 2M H3PO4electrolyte with the addition of 0÷2 % HF. The aim of the treatment was to form titanium oxide with a developed, rough morphology, useful for biomedical application. The morphology of the anodically oxidized samples was examined using SEM and AFM. The phase structure of the oxides was determined by XRD. One of the main parameters determining the suitability of that material for biomedical application is the corrosion resistance in an environment comparable to human body (Ringer’s solution). It has been observed that corrosion resistance of the anodized surfaces increases with the increase of the anodizing voltage for the samples oxidized in an electrolyte containing 0 % and 0.2 % HF. In electrolytes with the addition of 1 % and 2 % HF an inverse relationship was observed. The corrosion resistance of all tested surfaces was sufficiently high for the application as a biomaterial. The most promising anodizing treatment, providing best surface morphology and corrosion resistance was performed at 210 V in a 2M H3PO4+ 1 % HF electrolyte.


2020 ◽  
pp. 2050030
Author(s):  
YAO QU ◽  
CHAOLIN YANG ◽  
XIAOYUE JIN ◽  
JIANCHENG DU ◽  
WENBIN XUE

The structural and phase transformation of microarc oxidation (MAO) coatings on 6061 aluminum alloy at 300∘C/3[Formula: see text]MPa steam were evaluated. After 10 days steam corrosion, the weight loss of coated alloys with 15[Formula: see text][Formula: see text]m and 75[Formula: see text][Formula: see text]m thickness was only about 1/10 and 1/50 of weight gain of bare alloy, respectively. The [Formula: see text]-Al2O3 and [Formula: see text]-Al2O3 phases in the MAO coatings were stable at 300∘C/3[Formula: see text]MPa steam, but many fine needle-like or brick-like boehmite crystalline particles also appeared on coating surface. The boehmite had a large influence on the permittivity of coatings at low frequency. The MAO treatment on 6061 aluminum alloy improved its corrosion resistance at high-temperature and high-pressure steam.


2019 ◽  
Vol 484 ◽  
pp. 403-408 ◽  
Author(s):  
Shuiqing Liu ◽  
Xin Wang ◽  
Yourui Tao ◽  
Xu Han ◽  
Chunxiang Cui

2012 ◽  
Vol 460 ◽  
pp. 90-93
Author(s):  
Qi Zhou ◽  
Guang Xia Sun ◽  
Ping Zhao ◽  
Hong Yan Liu

The silane films are fabricated by dipping cast aluminum alloy in silane solution, then curing films. The corrosion resistance of single silane film, composite silane film is compared with phosphating film through acid dropping test, salt water immersion test and electrochemical impedance test (EIS), the results shows that the silane films are obviously superior to the phosphating films in terms of the corrosion resistance of acid solution and neutral salt solution, particularly the corrosion resistance of composite silane films is much better than sigle silane films; corrosion polarization curves show that the corrosion tendency of KH550+KH567 composite silane film is minimum, corrosion rate is yet minimal, corrosion process of this silane films is controled by diffusion step. The corrosion process of uncoated aluminum substrate, KH550 silane films, phosphating films are controlled by electrochemical step. The impedance of phosphate films are lower than the silane films. Appropriate silane treatment can effectively improve adhesion between the coating and the Al substrate. The adhesion between silane film and paint film is firmer than the phosphate film, so silane film is an excellent replacement to phosphate film for painting pre-treatment.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 188
Author(s):  
Costica Bejinariu ◽  
Diana-Petronela Burduhos-Nergis ◽  
Nicanor Cimpoesu

The carbon steel is used in many areas due to its good mechanical properties; however, its low corrosion resistance presents a very important problem, for example, when carbon steel carabiners are used in the petroleum industry or navy, the possibility of an accident is higher due to carabiner failure. This phenomenon could occur as a consequence of the corrosion process which negatively affects mechanical properties. This paper study the possibility to improve its corrosion resistance by depositing on its surface a phosphate layer and a paint layer, and also aims to analyze the immersion behavior in saltwater of carbon steel, phosphate carbon steel, and phosphate and painted carbon steel. According to this study, by coating the carbon steel with a phosphate or paint layer, a higher polarization resistance is obtained in saltwater. Moreover, by electrochemical impedance spectroscopy (EIS), it was observed that the corrosion rate decreases with the increase of the immersion time. Meanwhile scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) revealed that the main compounds which formed on the sample’s surface were iron oxides or hydroxy-oxides, after immersion for a longer period. The overall results show that all types of deposited layers increase the corrosion resistance of C45 steel.


Sign in / Sign up

Export Citation Format

Share Document