scholarly journals Efficient BFCN for Automatic Retinal Vessel Segmentation

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yun Jiang ◽  
Falin Wang ◽  
Jing Gao ◽  
Wenhuan Liu

Retinal vessel segmentation has high value for the research on the diagnosis of diabetic retinopathy, hypertension, and cardiovascular and cerebrovascular diseases. Most methods based on deep convolutional neural networks (DCNN) do not have large receptive fields or rich spatial information and cannot capture global context information of the larger areas. Therefore, it is difficult to identify the lesion area, and the segmentation efficiency is poor. This paper presents a butterfly fully convolutional neural network (BFCN). First, in view of the low contrast between blood vessels and the background in retinal blood vessel images, this paper uses automatic color enhancement (ACE) technology to increase the contrast between blood vessels and the background. Second, using the multiscale information extraction (MSIE) module in the backbone network can capture the global contextual information in a larger area to reduce the loss of feature information. At the same time, using the transfer layer (T_Layer) can not only alleviate gradient vanishing problem and repair the information loss in the downsampling process but also obtain rich spatial information. Finally, for the first time in the paper, the segmentation image is postprocessed, and the Laplacian sharpening method is used to improve the accuracy of vessel segmentation. The method mentioned in this paper has been verified by the DRIVE, STARE, and CHASE datasets, with the accuracy of 0.9627, 0.9735, and 0.9688, respectively.

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1820
Author(s):  
Yun Jiang ◽  
Huixia Yao ◽  
Zeqi Ma ◽  
Jingyao Zhang

The segmentation of retinal vessels is critical for the diagnosis of some fundus diseases. Retinal vessel segmentation requires abundant spatial information and receptive fields with different sizes while existing methods usually sacrifice spatial resolution to achieve real-time reasoning speed, resulting in inadequate vessel segmentation of low-contrast regions and weak anti-noise interference ability. The asymmetry of capillaries in fundus images also increases the difficulty of segmentation. In this paper, we proposed a two-branch network based on multi-scale attention to alleviate the above problem. First, a coarse network with multi-scale U-Net as the backbone is designed to capture more semantic information and to generate high-resolution features. A multi-scale attention module is used to obtain enough receptive fields. The other branch is a fine network, which uses the residual block of a small convolution kernel to make up for the deficiency of spatial information. Finally, we use the feature fusion module to aggregate the information of the coarse and fine networks. The experiments were performed on the DRIVE, CHASE, and STARE datasets. Respectively, the accuracy reached 96.93%, 97.58%, and 97.70%. The specificity reached 97.72%, 98.52%, and 98.94%. The F-measure reached 83.82%, 81.39%, and 84.36%. Experimental results show that compared with some state-of-art methods such as Sine-Net, SA-Net, our proposed method has better performance on three datasets.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2297
Author(s):  
Toufique A. Soomro ◽  
Ahmed Ali ◽  
Nisar Ahmed Jandan ◽  
Ahmed J. Afifi ◽  
Muhammad Irfan ◽  
...  

Segmentation of retinal vessels plays a crucial role in detecting many eye diseases, and its reliable computerized implementation is becoming essential for automated retinal disease screening systems. A large number of retinal vessel segmentation algorithms are available, but these methods improve accuracy levels. Their sensitivity remains low due to the lack of proper segmentation of low contrast vessels, and this low contrast requires more attention in this segmentation process. In this paper, we have proposed new preprocessing steps for the precise extraction of retinal blood vessels. These proposed preprocessing steps are also tested on other existing algorithms to observe their impact. There are two steps to our suggested module for segmenting retinal blood vessels. The first step involves implementing and validating the preprocessing module. The second step applies these preprocessing stages to our proposed binarization steps to extract retinal blood vessels. The proposed preprocessing phase uses the traditional image-processing method to provide a much-improved segmented vessel image. Our binarization steps contained the image coherence technique for the retinal blood vessels. The proposed method gives good performance on a database accessible to the public named DRIVE and STARE. The novelty of this proposed method is that it is an unsupervised method and offers an accuracy of around 96% and sensitivity of 81% while outperforming existing approaches. Due to new tactics at each step of the proposed process, this blood vessel segmentation application is suitable for computer analysis of retinal images, such as automated screening for the early diagnosis of eye disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuliang Ma ◽  
Xue Li ◽  
Xiaopeng Duan ◽  
Yun Peng ◽  
Yingchun Zhang

Purpose. Retinal blood vessel image segmentation is an important step in ophthalmological analysis. However, it is difficult to segment small vessels accurately because of low contrast and complex feature information of blood vessels. The objective of this study is to develop an improved retinal blood vessel segmentation structure (WA-Net) to overcome these challenges. Methods. This paper mainly focuses on the width of deep learning. The channels of the ResNet block were broadened to propagate more low-level features, and the identity mapping pathway was slimmed to maintain parameter complexity. A residual atrous spatial pyramid module was used to capture the retinal vessels at various scales. We applied weight normalization to eliminate the impacts of the mini-batch and improve segmentation accuracy. The experiments were performed on the DRIVE and STARE datasets. To show the generalizability of WA-Net, we performed cross-training between datasets. Results. The global accuracy and specificity within datasets were 95.66% and 96.45% and 98.13% and 98.71%, respectively. The accuracy and area under the curve of the interdataset diverged only by 1%∼2% compared with the performance of the corresponding intradataset. Conclusion. All the results show that WA-Net extracts more detailed blood vessels and shows superior performance on retinal blood vessel segmentation tasks.


2021 ◽  
Vol 38 (5) ◽  
pp. 1309-1317
Author(s):  
Jie Zhao ◽  
Qianjin Feng

Retinal vessel segmentation plays a significant role in the diagnosis and treatment of ophthalmological diseases. Recent studies have proved that deep learning can effectively segment the retinal vessel structure. However, the existing methods have difficulty in segmenting thin vessels, especially when the original image contains lesions. Based on generative adversarial network (GAN), this paper proposes a deep network with residual module and attention module (Deep Att-ResGAN). The network consists of four identical subnetworks. The output of each subnetwork is imported to the next subnetwork as contextual features that guide the segmentation. Firstly, the problems of the original image, namely, low contrast, uneven illumination, and data insufficiency, were solved through image enhancement and preprocessing. Next, an improved U-Net was adopted to serve as the generator, which stacks the residual and attention modules. These modules optimize the weight of the generator, and enhance the generalizability of the network. Further, the segmentation was refined iteratively by the discriminator, which contributes to the performance of vessel segmentation. Finally, comparative experiments were carried out on two public datasets: Digital Retinal Images for Vessel Extraction (DRIVE) and Structured Analysis of the Retina (STARE). The experimental results show that Deep Att-ResGAN outperformed the equivalent models like U-Net and GAN in most metrics. Our network achieved accuracy of 0.9565 and F1 of 0.829 on DRIVE, and accuracy of 0.9690 and F1 of 0.841 on STARE.


2021 ◽  
Vol 12 (1) ◽  
pp. 403
Author(s):  
Lin Pan ◽  
Zhen Zhang ◽  
Shaohua Zheng ◽  
Liqin Huang

Automatic segmentation and centerline extraction of blood vessels from retinal fundus images is an essential step to measure the state of retinal blood vessels and achieve the goal of auxiliary diagnosis. Combining the information of blood vessel segments and centerline can help improve the continuity of results and performance. However, previous studies have usually treated these two tasks as separate research topics. Therefore, we propose a novel multitask learning network (MSC-Net) for retinal vessel segmentation and centerline extraction. The network uses a multibranch design to combine information between two tasks. Channel and atrous spatial fusion block (CAS-FB) is designed to fuse and correct the features of different branches and different scales. The clDice loss function is also used to constrain the topological continuity of blood vessel segments and centerline. Experimental results on different fundus blood vessel datasets (DRIVE, STARE, and CHASE) show that our method can obtain better segmentation and centerline extraction results at different scales and has better topological continuity than state-of-the-art methods.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012104
Author(s):  
Sushma Nagdeote ◽  
Sapna Prabhu

Abstract This paper deals with the new segmentation techniques for retinal blood vessels on fundus images. This technique aims at extracting thin vessels to reduce the intensity difference between thick and thin vessels. This paper proposes the modified UNet model by incorporating ResNet blocks into it which includes structured prediction. In this work we generate the visualization of blood vessels from retinal fundus image for two loss functions namely cross entropy loss and Dice loss where the network classifies several pixels simultaneously. The results shows higher accuracy by considering a much more expressive UNet algorithm and outperforms the past algorithms for Retinal Vessel Segmentation. The benefits of this approach will be demonstrated empirically.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zihe Huang ◽  
Ying Fang ◽  
He Huang ◽  
Xiaomei Xu ◽  
Jiwei Wang ◽  
...  

Retinal blood vessels are the only deep microvessels in the blood circulation system that can be observed directly and noninvasively, providing us with a means of observing vascular pathologies. Cardiovascular and cerebrovascular diseases, such as glaucoma and diabetes, can cause structural changes in the retinal microvascular network. Therefore, the study of effective retinal vessel segmentation methods is of great significance for the early diagnosis of cardiovascular diseases and the vascular network’s quantitative results. This paper proposes an automatic retinal vessel segmentation method based on an improved U-Net network. Firstly, the image patches are rotated to amplify the image data, and then, the RGB fundus image is preprocessed by normalization. Secondly, after the improved U-Net model is constructed with 23 convolutional layers, 4 pooling layers, 4 upsampling layers, 2 dropout layers, and Squeeze and Excitation (SE) block, the extracted image patches are utilized for training the model. Finally, the fundus images are segmented through the trained model to achieve precise extraction of retinal blood vessels. According to experimental results, the accuracy of 0.9701, 0.9683, and 0.9698, sensitivity of 0.8011, 0.6329, and 0.7478, specificity of 0.9849, 0.9967, and 0.9895, F1-Score of 0.8099, 0.8049, and 0.8013, and area under the curve (AUC) of 0.8895, 0.8845, and 0.8686 were achieved on DRIVE, STARE, and HRF databases, respectively, which is better than most classical algorithms.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Congjun Liu ◽  
Penghui Gu ◽  
Zhiyong Xiao

Retinal vessel segmentation is essential for the detection and diagnosis of eye diseases. However, it is difficult to accurately identify the vessel boundary due to the large variations of scale in the retinal vessels and the low contrast between the vessel and the background. Deep learning has a good effect on retinal vessel segmentation since it can capture representative and distinguishing features for retinal vessels. An improved U-Net algorithm for retinal vessel segmentation is proposed in this paper. To better identify vessel boundaries, the traditional convolutional operation CNN is replaced by a global convolutional network and boundary refinement in the coding part. To better divide the blood vessel and background, the improved position attention module and channel attention module are introduced in the jumping connection part. Multiscale input and multiscale dense feature pyramid cascade modules are used to better obtain feature information. In the decoding part, convolutional long and short memory networks and deep dilated convolution are used to extract features. In public datasets, DRIVE and CHASE_DB1, the accuracy reached 96.99% and 97.51%. The average performance of the proposed algorithm is better than that of existing algorithms.


2019 ◽  
Vol 10 (1) ◽  
pp. 30-38
Author(s):  
Santosh S. Chowhan ◽  
Rakesh S. Deore ◽  
Sachin A. Naik

Diabetic retinopathy is a disease in diabetic patients that affects the eye. It happens due to damage in the blood vessels of the light-sensitive tissues at the retina. In non-proliferative diabetic retinopathy, tiny changes occur in the blood vessels of the eye. Non-proliferative diabetic retinopathy can trigger macular edema or macular ischemia. In this study proposes the retinal vessel segmentation and vessel quantization on the DRIVE database which is publicly available. The experimental results express the retinal vessel can be effectively detected and segmented.


Sign in / Sign up

Export Citation Format

Share Document