scholarly journals STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiangyu Wang ◽  
Fengmian Wang ◽  
Zhi-Gang Zhang ◽  
Xiao-Mei Yang ◽  
Rong Zhang ◽  
...  

Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells.

2020 ◽  
Author(s):  
Zi-Qing Shi ◽  
Zi-Yan Chen ◽  
Yao Han ◽  
Heng-Yan Zhu ◽  
Meng-Dan Lyu ◽  
...  

Abstract Background: Wnt-inducible signaling pathway protein 2 (WISP2) is a wnt1-induced signaling pathway protein 2. Although studies indicate that WISP2 may promote the development of various tumors, its role in ovarian cancer remains unclear. The objective of the current study was to analyze the effects of WISP2 on the proliferation and migration of ovarian cancer cells in vitro and in vivo.Results: Immunohistochemistry and western blotting indicated that WISP2 was highly expressed in various ovarian cancer tissues and cell lines,but weakly expressed in normal ovary tissue. WISP2 deletion inhibited cell growth, clone formation, and migration of ovarian cancer cells while promoting cell apoptosis and affecting the cell cycle. This growth inhibitory effect caused by WISP2 loss is due to the inhibition of phosphorylated extracellular signal-related kinase (p-ERK)1/2, as well as CCAAT/enhancer-binding protein α (CEBPα) and CEPBβ. In addition, WISP2 deletion also activated the Yes-associated protein (YAP).Conclusion: WISP2 deletion inhibits ovarian cancer cell proliferation by affecting ERK signaling pathways.


2020 ◽  
Author(s):  
Zi-Qing Shi ◽  
Zi-Yan Chen ◽  
Yao Han ◽  
Heng-Yan Zhu ◽  
Meng-Dan Lyu ◽  
...  

Abstract Background Wnt inducible signaling protein 2 (WISP2) is a wnt1-induced signaling pathway protein 2. Although studies indicate that WISP2 may promote the development of various tumors, its role in ovarian cancer remains unclear. The objective of the current study was to analyze the effects of WISP2 on proliferation and migration of ovarian cancer cells in vitro and in vivo . Results Immunohistochemistry and western blot results indicated that WISP2 was highly expressed in various ovarian tissues and cell lines. WISP2 deletion inhibited cell growth, clone formation, and migration of ovarian cancer cells. WISP2 deletion promoted cell apoptosis and affected the cell cycle. This growth inhibitory effect caused by WISP2 loss is due to the inhibition of extracellular signal-related kinase (p-ERK)1/2, as well as CEBPα and CEBPβ. In addition, WISP2 deletion also activated the Yes-associated protein (YAP). Conclusion WISP2 deletion inhibits ovarian cancer cell proliferation by affecting ERK signaling pathways.


2020 ◽  
Author(s):  
Lei Chang ◽  
Junying Zhou ◽  
Wanjia Tian ◽  
Mengyu Chen ◽  
Ruixia Guo ◽  
...  

Abstract Background Extracellular vesicle (EV) that delivered microRNAs (miRNAs) have been found as the important biomarkers participating in the pathological mechanism of ovarian cancer. Consequently, this study sought to examine the underlying mechanism of mesenchymal stem cell (MSC)-derived EVs containing miR-4488 in ovarian cancer. Methods The normal ovarian tissues and ovarian cancer tissues were extracted, and the information of MSC-EV miRNA was obtained by Bioinformatics analysis. RT-qPCR and western blot analysis were applied to detect miR-4488 and α/β-hydrolase domain-containing (ABHD)8 expression followed by determination of relationship between miR-4488 and ABHD8 by dual-luciferase reporter assay. After transfection with different plasmids and treatment with DMSO or GW4869 (inhibitor of EV), the regulatory roles of MSC-EV-miR-4488 in invasion, proliferation, apoptosis, and migration of cancer cells were explored. Besides, xenograft tumor in nude mice was conducted to explore the role of miR-4488 and ABHD8 in ovarian cancer in vivo. Results miR-4488 was poorly expressed and ABHD8 was highly expressed in ovarian cancer cells and tissues. ABHD8 was a target gene of miR-4488 while the knockdown of ABHD8 resulted in the suppression of proliferation, invasion, and migration while promoting the apoptosis of cancer cells. Functionally, MSC-EV-derived miR-4488 inhibited the expression of ABHD8. Additionally, miR-4488 over-expressed in MSC-EVs inhibited the cell proliferation, invasion, and migration through down-regulation of ABHD8 expression. At last, these in vitro findings were also confirmed in vivo. Conclusion To summarize, miR-4488 overexpressed in MSC-EVs suppressed ABHD8 expression to inhibit the cancer cell proliferation, invasion, and migration, thus suppressing ovarian cancer.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2020 ◽  
Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background: Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored.Methods: Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism.Results: It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decrease Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU.Conclusions: ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xuehan Bi ◽  
Xiao Lv ◽  
Dajiang Liu ◽  
Hongtao Guo ◽  
Guang Yao ◽  
...  

AbstractOvarian cancer is a common gynecological malignant tumor with a high mortality rate and poor prognosis. There is inadequate knowledge of the molecular mechanisms underlying ovarian cancer. We examined the expression of methyltransferase-like 3 (METTL3) in tumor specimens using RT-qPCR, immunohistochemistry, and Western blot analysis, and tested the methylation of METTL3 by MSP. Levels of METTL3, miR-1246, pri-miR-1246 and CCNG2 were then analyzed and their effects on cell biological processes were also investigated, using in vivo assay to validate the in vitro findings. METTL3 showed hypomethylation and high expression in ovarian cancer tissues and cells. Hypomethylation of METTL3 was pronounced in ovarian cancer samples, which was negatively associated with patient survival. Decreased METTL3 inhibited the proliferation and migration of ovarian cancer cells and promoted apoptosis, while METTL3 overexpression exerted opposite effects. Mechanistically, METTL3 aggravated ovarian cancer by targeting miR-1246, while miR-1246 targeted and inhibited CCNG2 expression. High expression of METTL3 downregulated CCNG2, promoted the metabolism and growth of transplanted tumors in nude mice, and inhibited apoptosis. The current study highlights the promoting role of METTL3 in the development of ovarian cancer, and presents new targets for its treatment.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X2090255
Author(s):  
Eunbi Jo ◽  
Hyun-Jin Jang ◽  
Kyeong E. Yang ◽  
Min S. Jang ◽  
Yang H. Huh ◽  
...  

This study aimed to investigate the effect of Cordyceps militaris extract on the proliferation and apoptosis of carboplatin- resistant SKOV-3 and determine the underlying mechanisms for overcoming carboplatin resistance in human ovarian cancer. We cultured the carboplatin-resistant SKOV-3 cells in vitro until the exponential growth phase and then treated with different concentrations of C. militaris for 24, 48, and 72 hours. We performed cell proliferation assay, cell morphological change assessment using transmission electron microscopy, apoptosis assay, and immunoblotting to measure the protein expression of caspase-3 and -8, poly (ADP-ribose) polymerase (PARP)-1, B-cell lymphoma (Bcl)-2, and activating transcription factor 3 (ATF3)/TP53 signaling-related proteins. As a result, C. militaris reduced the viability of carboplatin-resistant SKOV-3 and induced morphological disruptions in a dose- and time-dependent manner. The gene expression profiles indicated a reprogramming pattern of the previously known and unknown genes and transcription factors associated with the action of TCTN3 on carboplatin-resistant SKOV-3 cells. We also confirmed the C. militaris-induced activation of the ATF3/TP53 pathway. Immunoblotting indicated that cotreatment of C. militaris and carboplatin-mediated ATF3/TP53 upregulation induced apoptosis in the carboplatin-resistant SKOV-3 cells, which are involved in the serial activation of pro-apoptotic proteins, including Bcl-2, Bax, caspases, and PARP-1. Further, when the ATF3 and TP53 expression increased, the CHOP and PUMA expressions were upregulated. Consequently, the upregulated CHOP/PUMA expression activated the positive regulation of the apoptotic signaling pathway. In addition, it decreased the Bcl-2 expression, leading to marked ovarian cancer cells sensitive to carboplatin by enhancing apoptosis. We then corroborated these results using in vivo experiments. Taken together, C. militaris inhibits carboplatin-resistant SKOV-3 cell proliferation and induces apoptosis possibly through ATF3/TP53 signaling upregulation and CHOP/PUMA activation. Therefore, our findings provide new insights into the treatment of carboplatin-resistant ovarian cancer using C. militaris.


Sign in / Sign up

Export Citation Format

Share Document