scholarly journals Spatiotemporal Characteristics of Urban Surface Temperature and Its Relationship with Landscape Metrics and Vegetation Cover in Rapid Urbanization Region

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hongbo Zhao ◽  
Juntao Tan ◽  
Zhibin Ren ◽  
Zheye Wang

Under the trend of rapid urbanization, the urban heat island (UHI) effect has become a hot issue for scholars to study. In order to better alleviate UHI effect, it is important to understand the effect of landuse/landcover (LULC) and landscape patterns on the urban thermal environment from perspective of landscape ecology. This research aims to quantitatively investigate the effect of LULC landscape patterns on UHI effects more accurately based on a landscape metrics analysis. In addition, we also explore the complex relationship between land surface temperature (LST) and vegetation cover. Taking Zhengzhou City of China as a case study, an integrated method which includes the geographic information system (GIS), remote-sensing (RS) technology, and landscape metrics was employed to facilitate the analysis. Landsat data (2000–2014) were applied to investigate the spatiotemporal evolution patterns of LST and LULC. The results indicated that the mean LST value increased by 2.32°C between 2000 and 2014. The rise of LST was consistent with the trend of rapid urbanization in Zhengzhou City, which resulted in sharp increases in impervious surfaces (IS) and substantial losses of vegetation cover. Furthermore, the investigation of LST and vegetation cover demonstrated that fractional vegetation cover (FVC) had a stronger negative effect on LST than normalized differential vegetation index (NDVI). In addition, LST was obviously correlated with LULC landscape patterns, and both landscape composition and spatial configuration affected UHI effects to varying degrees. This study not only illustrates a feasible way to investigate the relationship between LULC and urban thermal environment but also suggests some important measures to improve urban planning to reduce UHI effects for sustainable development.

2020 ◽  
Vol 12 (2) ◽  
pp. 307 ◽  
Author(s):  
Fei Liu ◽  
Xinmin Zhang ◽  
Yuji Murayama ◽  
Takehiro Morimoto

Satellite-derived land surface temperature (LST) reveals the variations and impacts on the terrestrial thermal environment on a broad spatial scale. The drastic growth of urbanization-induced impervious surfaces and the urban population has generated a remarkably increasing influence on the urban thermal environment in China. This research was aimed to investigate land surface temperature (LST) intensity response to urban land cover/use by examining the thermal impact on urban settings in ten Chinese megacities (i.e., Beijing, Dongguan, Guangzhou, Hangzhou, Harbin, Nanjing, Shenyang, Suzhou, Tianjin, and Wuhan). Surface urban heat island (SUHI) footprints were scrutinized and compared by magnitude and extent. The causal mechanism among land cover composition (LCC), population, and SUHI was also identified. Spatial patterns of the thermal environments were identical to those of land cover/use. In addition, most impervious surface materials (greater than 81%) were labeled as heat sources, on the other hand, water and vegetation were functioned as heat sinks. More than 85% of heat budgets in Beijing and Guangzhou were generated from impervious surfaces. SUHI for all megacities showed spatially gradient decays between urban and surrounding rural areas; further, temperature peaks are not always dominant in the urban core, despite extremely dense impervious surfaces. The composition ratio of land cover (LCC%) negatively correlates with SUHI intensity (SUHII), whereas the population positively associates with SUHII. For all targeted megacities, land cover composition and population account for more than 63.9% of SUHI formation using geographically weighted regression. The findings can help optimize land cover/use to relieve pressure from rapid urbanization, maintain urban ecological balance, and meet the demands of sustainable urban growth.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


2022 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Qiong Wu ◽  
Zhaoyi Li ◽  
Changbao Yang ◽  
Hongqing Li ◽  
Liwei Gong ◽  
...  

Urbanization processes greatly change urban landscape patterns and the urban thermal environment. Significant multi-scale correlation exists between the land surface temperature (LST) and landscape pattern. Compared with traditional linear regression methods, the regression model based on random forest has the advantages of higher accuracy and better learning ability, and can remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and evenness played more important roles than the other metrics in the change of LST. The multi-scale relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing, the effect of the extent of change on the landscape pattern is greater than that of the grain size change, and the interpretation effect and correlation of landscape metrics on LST increase with the increase in the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces located at low building areas were more likely to increase LST than those located at tall building areas. It seems that increasing the distance between buildings to improve the rate of energy exchange between urban and rural areas can effectively decrease LST. Vegetation and water can effectively reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power function fitting results of landscape metrics showed that the optimal rectangle size for studying the relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 630
Author(s):  
Peter Sang-Hoon Lee ◽  
Jincheol Park

The urban heat island effect has posed negative impacts on urban areas with increased cooling energy demand followed by an altered thermal environment. While unusually high temperature in urban areas has been often attributed to complex urban settings, the function of urban forests has been considered as an effective heat mitigation strategy. To investigate the cooling effect of urban forests and their influence range, this study examined the spatiotemporal changes in land surface temperature (LST) of urban forests and surrounding areas by using Landsat imageries. LST, the size of the urban forest, its vegetation cover, and Normalized Difference Vegetation Index (NDVI) were investigated for 34 urban forests and their surrounding areas at a series of buffer areas in Seoul, South Korea. The mean LST of urban forests was lower than that of the overall city, and the threshold distance from urban forests for cooling effect was estimated to be roughly up to 300 m. The group of large-sized urban forests showed significantly lower mean LST than that of small-sized urban forests. The group of urban forests with higher NDVI showed lower mean LST than that of urban forests with lower mean NDVI in a consistent manner. A negative linear relationship was found between the LST and size of urban forest (r = −0.36 to −0.58), size of vegetation cover (r = −0.39 to −0.61), and NDVI (r = −0.42 to −0.93). Temporal changes in NDVI were examined separately on a specific site, Seoul Forest, that has experienced urban forest dynamics. LST of the site decreased as NDVI improved by a land-use change from a barren racetrack to a city park. It was considered that NDVI could be a reliable factor for estimating the cooling effect of urban forest compared to the size of the urban forest and/or vegetation cover.


2019 ◽  
Vol 11 (8) ◽  
pp. 959 ◽  
Author(s):  
Yanwei Sun ◽  
Chao Gao ◽  
Jialin Li ◽  
Run Wang ◽  
Jian Liu

It is widely acknowledged that urban form significantly affects urban thermal environment, which is a key element to adapt and mitigate extreme high temperature weather in high-density urban areas. However, few studies have discussed the impact of physical urban form features on the land surface temperature (LST) from a perspective of comprehensive urban spatial structures. This study used the ordinary least-squares regression (OLS) and random forest regression (RF) to distinguish the relative contributions of urban form metrics on LST at three observation scales. Results of this study indicate that more than 90% of the LST variations were explained by selected urban form metrics using RF. Effects of the magnitude and direction of urban form metrics on LST varied with the changes of seasons and observation scales. Overall, building morphology and urban ecological infrastructure had dominant effects on LST variations in high-density urban centers. Urban green space and water bodies demonstrated stronger cooling effects, especially in summer. Building density (BD) exhibited significant positive effects on LST, whereas the floor area ratio (FAR) showed a negative influence on LST. The results can be applied to investigate and implement urban thermal environment mitigation planning for city managers and planners.


2020 ◽  
Author(s):  
Zheng Guo ◽  
Miaomiao Cheng

<p>Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter, which is a very important factor in the field of the urban thermal environmental. Nowadays, the research of urban thermal environment mainly focused on surface heat island and canopy heat island.</p><p>Based on analysis of the current status of city thermal environment. Firstly, a method was proposed to obtain near surface air temperature diurnal range in this study, difference of land surface temperature between day and night were introduced into the improved temperature vegetation index feature space based on remote sensing data. Secondly, compared with the district administrative division, we analyzed the spatial and temporal distribution characteristics of the diurnal range of land surface temperature and near surface air temperature.</p><p>The conclusions of this study are as follows:</p><p>1 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing were fluctuating upward. The rising trend of the near surface air temperature diurnal range was more significant than land surface temperature diurnal range. In addition, the rise and decline of land surface temperature and near surface air temperature diurnal range in different districts were different. In the six city districts, the land surface temperature and near surface air temperature diurnal range in the six areas of the city were mainly downward. The decline trend of near surface air temperature diurnal range was more significant than land surface temperature diurnal range.</p><p>2 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing with similar characteristics in spatial distribution, with higher distribution land surface temperature and near surface air temperature diurnal range in urban area and with lower distribution of land surface temperature and near surface air temperature diurnal range in the Northwest Mountainous area and the area of Miyun reservoir.</p>


2020 ◽  
Vol 3 (2) ◽  
pp. a35-43
Author(s):  
MD. NAZMUL HAQUE ◽  
NOWRIN RAHMAN KHANAM ◽  
MEHNAZ NANJIBA

Land surface temperature and vegetation cover are two important parameters to evaluate the climate change and environmental condition. The current study is carried out in respect of monitoring the changing phenomena of climate and environment. The area selected to conduct the study was ward number 1, 2 and 3 of Khulna City Corporation), from the third largest city of Bangladesh. This study is corresponding through the calculation of Land Surface Temperature (LST) and Normalized Differential Vegetation Index (NDVI) for two different years, 2010 and 2018. LST and NDVI are observed to realize the association between surface temperature and amount of vegetation. With the help of ArcGIS 10.5, LST and NDVI calculations are done using Landsat 5 Thermal Mapper, Landsat 8 Operational Land Imager and Thermal Infrared Sensor images (for 2010 and 2018, respectively) collected from USGS Earth Explorer. The findings of the study specify that the highest temperature in 2018 is 32.5˚C in ward 2 and in 2010 it was 27.5˚C in ward 3, though the overall vegetation amount decreased in 2018, About 18, 900 square meter of very low canopy area has increased in ward 3 from the period of 2010 to 2018 and in the same time 35, 100 square meter of low canopy area has been decreased for the overall study area. However, parts of the study area of ward no. 3 had faced a significant increase in vegetation cover which is the cause of low temperature compared to ward 1 and 2 in 2018.


2019 ◽  
Vol 11 (10) ◽  
pp. 2890 ◽  
Author(s):  
Hongyu Du ◽  
Jinquan Ai ◽  
Yongli Cai ◽  
Hong Jiang ◽  
Pudong Liu

Rapid urbanization leads to changes in surface coverage and landscape patterns. This results in urban heat island (UHI) effects and a series of negative ecological consequences. Considering this concern and taking Shanghai as an example, this paper concentrates on the effects of surface coverage and landscape patterns on urban land surface temperature (LST). The research is based on quantitative retrieval of remote sensing data with consideration of methods in multiple disciplines, including landscape ecology, geographic information systems, and statistical analysis. It concludes that, over time, the thermal environment of Shanghai is becoming critical. The average LST ranking of different surface coverage is as follows: Construction land (CL) > bare land (BL) > green land (GL) > agricultural land (AL) > water body (WB). LST varies significantly with the type of surface coverage. CL contributes the most to the UHI, while WB and GL have obvious mitigation effects on the UHI. The large area, low degree of landscape fragmentation, and complex outlines lead to low LST rankings for GL, WB, and AL and a high LST ranking for CL. The conclusions indicate that CL should be broken down by GL and WB into discrete pieces to effectively mitigate UHI effects. The research reveals UHI features and changes in Shanghai over the years and provides practical advice that can be used by urban planning authorities to mitigate UHI.


2019 ◽  
Vol 51 (3) ◽  
pp. 357
Author(s):  
Hasti Widyasamratri ◽  
Kazuyoshi Souma ◽  
Tadashi Suetsugi

This research aim to investigate the urban thermal environment profile and land cover classification  in the Jakarta Metropolitan Area (JMA) in 1989 and 2013. Thermal environment conducted by installing fix point ground measurement of air temperature and land surface temperature. The land cover classification was carried out  by using Landsat TM 5 and Landsat 7 ETM+ data sets. The diurnal variation of air temperature shows that Urban Heat Island (UHI) was occurring in urban and suburban JMA, which can be seen the slower cooling period in the urban area than suburban areas. Positive correlation between air temperature (Ta) and land surface temperature (Ts) on the brush (r2 = 0.78) and the asphalt surface (r2= 0.88) is clearly shown during the study. The rapid urbanization was detected during 1989 to 2013 where the urban sprawl is spread over to the whole area of JMA. Urban built up is the dominant of high increase due to years, while vegetation is decreasing.    


Sign in / Sign up

Export Citation Format

Share Document